LIMITED WARRANTY TERMS AND CONDITIONS

Product Limited Warranty

Subject to the following terms and conditions, Trimble Inc. (“Trimble”) warrants that for a period of one (1) year from date of purchase unless otherwise specified, this Trimble product (the “Product”) will substantially conform to Trimble’s publicly available specifications for the Product and that the hardware and any storage media components of the Product will be substantially free from defects in materials and workmanship.

Software Fixes

Product software, whether built into hardware circuitry as firmware, provided as a standalone computer software product, embedded in flash memory, or stored on magnetic or other media, is licensed solely for use with or as an integral part of the Product and is not sold. If accompanied by a separate end user license agreement (“EULA”), use of any such software will be subject to the terms of such end user license agreement (including any differing limited warranty terms, exclusions, and limitations), which shall control over the terms and conditions set forth in this limited warranty.

During the limited warranty period you will be entitled to receive such Fixes to the Product software that Trimble releases and makes commercially available and for which it does not charge separately, subject to the procedures for delivery to purchasers of Trimble products generally. If you have purchased the Product from an authorized Trimble dealer rather than from Trimble directly, Trimble may, at its option, forward the software Fix to the Trimble dealer for final distribution to you. Minor Updates, Major Upgrades, new products, or substantially new software releases, as identified by Trimble, are expressly excluded from this update process and limited warranty. Receipt of software Fixes or other enhancements shall not serve to extend the limited warranty period.

For purposes of this warranty the following definitions shall apply: (1) “Fix(es)” means an error correction or other update created to fix a previous software version that does not substantially conform to its Trimble specifications; (2) “Minor Update” occurs when enhancements are made to current features in a software program; and (3) “Major Upgrade” occurs when significant new features are added to software, or when a new product containing new features replaces the further development of a current product line.

Trimble reserves the right to determine, in its sole discretion, what constitutes a Fix, Minor Update, or Major Upgrade.

Warranty Remedies

If the Trimble Product fails during the warranty period for reasons covered by this limited warranty and you notify Trimble of such failure during the warranty period, Trimble will repair OR replace the nonconforming Product with new, equivalent to new, or reconditioned parts or Product. OR refund the Product purchase price paid by you, at Trimble’s option, upon your return of the Product in accordance with Trimble’s product return procedures then in effect.

How to Obtain Warranty Service

To obtain warranty service for the Product, please contact your local Trimble authorized dealer. Alternatively, you may contact Trimble to request warranty service by e-mailing your request to GSSOEOMSupport@trimble.com. Please be prepared to provide:

• Your name, address, and telephone numbers
• Proof of purchase
• A copy of this Trimble warranty
• A description of the nonconforming Product including the model number
• An explanation of the problem

The customer service representative may need additional information from you depending on the nature of the problem.

Warranty Exclusions or Disclaimer

This Product limited warranty shall only apply in the event to and the extent that (a) the Product is properly and correctly installed, configured, interfaced, maintained, stored, and operated in accordance with Trimble’s applicable operator’s manual and specifications, and; (b) the Product is not modified or misused.

This Product limited warranty shall not apply to, and Trimble shall not be responsible for, defects or performance problems resulting from (i) the combination or utilization of the Product with hardware or software products, information, data, systems, interfaces, or devices not made, supplied, or specified by Trimble; (ii) the operation of the Product under any specification other than, or in addition to, Trimble’s standard specifications for its products; (iii) the unauthorized installation, modification, or use of the Product; (iv) damage caused by: accident, lightning or other electrical discharge, fresh or salt water immersion or spray (outside of Product specifications); or exposure to environmental conditions for which the Product is not intended; (v) normal wear and tear on consumable parts (e.g., batteries); or (vi) cosmetic damage. Trimble does not warrant or guarantee the results obtained through the use of the Product, or that software components will operate error free.

NOTICE REGARDING PRODUCTS EQUIPPED WITH TECHNOLOGY CAPABLE OF TRACKING SATELLITE SIGNALS FROM SATELLITE BASED AUGMENTATION SYSTEMS (SBAS) (WAAS/EGNOS, AND MSAS), OMNISTAR, GPS, MODERNIZED GPS OR GLONASS SATELLITES, OR FROM IALA BEACON SOURCES

Trimble is not responsible for the operation or failure of operation of any satellite based positioning system or the availability of any satellite based positioning signals.
THE FOREGOING LIMITED WARRANTY TERMS STATE TRIMBLE’S ENTIRE LIABILITY, AND YOUR EXCLUSIVE REMEDIES, RELATING TO THE TRIMBLE PRODUCT. EXCEPT AS OTHERWISE EXPRESSLY PROVIDED HEREIN, THE PRODUCT, AND ACCOMPANYING DOCUMENTATION AND MATERIALS ARE PROVIDED “AS-IS” AND WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND, BY EITHER TRIMBLE OR ANYONE WHO HAS BEEN INVOLVED IN ITS CREATION, PRODUCTION, INSTALLATION, OR DISTRIBUTION, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND NONINFRINGEMENT. THE STATED EXPRESS WARRANTIES ARE IN LIEU OF ALL OBLIGATIONS OR LIABILITIES ON THE PART OF TRIMBLE ARISING OUT OF, OR IN CONNECTION WITH, ANY PRODUCT. BECAUSE SOME STATES AND JURISDICTIONS DO NOT ALLOW LIMITATIONS ON DURATION OR THE EXCLUSION OF AN IMPLIED WARRANTY, THE ABOVE LIMITATION MAY NOT APPLY OR FULLY APPLY TO YOU.

Limitation of Liability
TRIMBLE’S ENTIRE LIABILITY UNDER ANY PROVISION HEREIN SHALL BE LIMITED TO THE AMOUNT PAID BY YOU FOR THE PRODUCT, TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL TRIMBLE OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGE WHATSOEVER UNDER ANY CIRCUMSTANCE OR LEGAL THEORY RELATING IN ANY WAY TO THE PRODUCTS, SOFTWARE AND ACCOMPANYING DOCUMENTATION AND MATERIALS, INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF DATA, OR ANY OTHER PECUNIARY LOSS), REGARDLESS OF WHETHER TRIMBLE HAS BEEN ADVISED OF THE POSSIBILITY OF ANY SUCH LOSS AND REGARDLESS OF THE COURSE OF DEALING WHICH DEVELOPS OR HAS DEVELOPED BETWEEN YOU AND TRIMBLE, BECAUSE SOME STATES AND JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES, THE ABOVE LIMITATION MAY NOT APPLY OR FULLY APPLY TO YOU.

PLEASE NOTE: THE ABOVE TRIMBLE LIMITED WARRANTY PROVISIONS WILL NOT APPLY TO PRODUCTS PURCHASED IN THOSE JURISDICTIONS (E.G., MEMBER STATES OF THE EUROPEAN ECONOMIC AREA) IN WHICH PRODUCT WARRANTIES ARE THE RESPONSIBILITY OF THE LOCAL TRIMBLE AUTHORIZED DEALER FROM WHOM THE PRODUCTS ARE ACQUIRED. IN SUCH A CASE, PLEASE CONTACT YOUR LOCAL TRIMBLE AUTHORIZED DEALER FOR APPLICABLE WARRANTY INFORMATION.

USA
Supplier’s Declaration of Conformity
We, Trimble,
declare under sole responsibility that the product: MB-Two GNSS Board complies with Part 15 of FCC Rules. Operation is subject to the following two conditions:
(1) this device may not cause harmful interference,
(2) and this device must accept any interference received, including interference that may cause undesired operation.

Trimble Inc.
10368 Westmoor Dr.
Westminster, CO 80021

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and the receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

Any changes or modifications to this equipment not expressly approved by Trimble Inc. may cause, harmful interference and void the FCC authorization to operate this equipment.

PLEASE NOTE: THE ABOVE TRIMBLE LIMITED WARRANTY PROVISIONS WILL NOT APPLY TO PRODUCTS PURCHASED IN THOSE JURISDICTIONS (E.G., MEMBER STATES OF THE EUROPEAN ECONOMIC AREA) IN WHICH PRODUCT WARRANTIES ARE THE RESPONSIBILITY OF THE LOCAL TRIMBLE AUTHORIZED DEALER FROM WHOM THE PRODUCTS ARE ACQUIRED. IN SUCH A CASE, PLEASE CONTACT YOUR LOCAL TRIMBLE AUTHORIZED DEALER FOR APPLICABLE WARRANTY INFORMATION.
Europe

Hereby, Trimble, declares that the MB-Two GNSS board is in compliance with the following directives:
– RED 2014/53/EU
– RoHS Directive 2011/65/EU.

The products covered by this guide may be operated in all EU member countries (BE, BG, CZ, DK, DE, EE, IE, EL, ES, FR, HR, HU, IT, LV, LT, LU, MT, NL, AT, PL, PT, RO, SI, SK, FI, SE, UK), Norway, and Switzerland.

Official Language

THE OFFICIAL LANGUAGE OF THESE TERMS AND CONDITIONS IS ENGLISH. IN THE EVENT OF A CONFLICT BETWEEN ENGLISH AND OTHER LANGUAGE VERSIONS, THE ENGLISH LANGUAGE SHALL CONTROL.

COCOM Limits

The U.S. Department of Commerce requires that all exportable GPS products contain performance limitations so that they cannot be used in a manner that could threaten the security of the United States. The following limitations are implemented on this product:
- Immediate access to satellite measurements and navigation results is disabled when the receiver velocity is computed to be greater than 1,000 knots, or its altitude is computed to be above 18,000 meters.
- The receiver GPS subsystem resets until the COCOM situation clears. As a result, all logging and stream configurations stop until the GPS subsystem is cleared.

Restriction of Use of Certain Hazardous Substances in Electrical and Electronic Equipment (RoHS).

Waste Electrical and Electronic Equipment (WEEE)

For product recycling instructions and more information, please go to:

Recycling in Europe: To recycle Trimble WEEE (Waste Electrical and Electronic Equipment, products that run on electrical power), call +31 497 53 24 30, and ask for the “WEEE Associate”. Or, mail a request for recycling instructions to:
Trimble Europe BV
c/o Menlo Worldwide Logistics
Meerheide 45
5521 DZ Eersel, NL

MB-Two Reference Manual Release Notes, December 2019

The content of this new MB-Two Reference Manual reflects the changes and enhancements made to the board compared to the July 2019 edition of this manual.

1. Chapter 5 about Web server and the corresponding on-line help files have been upgraded regarding access rights and their consequences.
2. Some $PASHS commands updated: ATH, PWD - CST, ON - NTR, PAR - TCP, PAR - WEB, PAR.
3. Two $PASHS commands removed: WEB, USR, ADD - WEB, USR, DEL.

NOTICE: This manual, and more specifically its appendix, provides general information on GNSS systems and frequencies, irrespective of the product to which the manual is dedicated. For example the L5 frequency is mentioned repeatedly in the appendix, but remember this frequency is not supported by the MB-Two. If you are in doubt about a particular feature and would like to know whether it is supported in the MB-Two or not, please refer to the Specifications section in Chapter 1.
Table of Contents

Chapter 1. Introduction.. 1
 Introduction... 1
 Operating Modes... 3
 MB-Two Top and Bottom Views.. 6
 List of Items... 6
 Specifications... 12
 Board Layout and Dimensions.. 17
 I/O Connector Pin Out... 18
 LED Indicator... 19
 Communication Ports... 20

Chapter 2. First Steps With the MB-Two 21
 Using the Evaluation Kit... 21
 Using AshCom to Communicate with MB-Two..................... 23
 Connecting MB-Two to your Application......................... 27
 Precautions Before Turning Off the Board....................... 29
 GNSS Antenna Setup for Heading/Attitude Measurements.... 29

Chapter 3. Typical Applications Explained................................. 35
 Preamble... 35
 Rover Computing RTK Position.. 37
 Rover Computing Internal Heading + RTK Position............. 38
 Rover Computing Hot Standby RTK Position..................... 41
 Rover Computing Internal Vector...................................... 43
 Rover Computing Attitude... 45
 Rover Computing External Vector (Relative Positioning).... 47
 Rover Computing Internal Heading and External Vector...... 50
 Rover Computing External Heading................................. 52
 Rover Computing Two Independent RTK Positions (Dual RTK)... 54
 Rover Delivering Two External Vectors (Dual Relative RTK)... 56
 Rover Computing RTX Position.. 58
 Base Configurations.. 59
 Raw Data Recording.. 62
 Adding Startup Protection to the Board............................ 63

Chapter 4. Trimble RTX Correction Service............................... 67
 Introduction... 67
 Computing RTX Position in MB-Two................................. 67
 Implementing Trimble RTX using the MB-Two Web Server.... 68
 Trimble RTX Accuracy Figures... 70

Chapter 5. Setting the MB-Two from the Web Server.................... 71
 Running the Embedded Web Server................................. 71
 Managing Access Rights... 75
 Home Page.. 76
 Receiver Page.. 79
Chapter 6. Configuring the MB-Two Using Serial Commands............. 125
 Introduction to Serial Commands ... 125
 Overview of the MB-Two Proprietary Commands 128

Chapter 7. Set Command Library.. 139
 3DF: Running Attitude Processing on Set Baselines................... 139
 3DF,ANG: Maximum Baseline Elevation 141
 3DF,CLB: Running/Resetting Baseline Auto-Calibration 141
 3DF,MXB: Setting Baseline Length Tolerance 142
 3DF,OFS: Defining Heading-Pitch-Roll Offset Values 143
 3DF,RST: Resetting Attitude Computation and Calibration 145
 3DF,Vx: Entering Vector Components 146
 ALR,ACK: Acknowledging Alarms .. 147
 ANH: Antenna Height .. 147
 ANP,OUT: Defining a Virtual Antenna 148
 ANP,OWN: Naming Local Antennas .. 150
 ANP,REF: Naming the Antenna Used at the Base 151
 ANR: Antenna Reduction Mode ... 152
 ANT: Antenna Height ... 154
 ATH,PWD: Defining the Startup Password 156
 ATL: Debug Messages .. 156
 ATM: Enabling/Disabling ATOM Messages 158
 ATM,ALL: Disabling All ATOM Messages 161
 BDS: BeiDou Tracking ... 161
 BLN: Defining Baselines and their Base/Rover Data Sources 163
 BRD: Enabling/Disabling the RTK Bridge Function 165
 BRV: Relative Processing .. 166
 BRV,RST: Resetting Relative Positioning Mode 167
 CAN,OFF: Disabling the CAN Port .. 168
 CAN,ON: Enabling the CAN Port ... 168
 CAN,PAR: Setting the CAN Parameters 169
 CMD,LOD: Running a List of $PASH Commands 170
 CMD,WTI: Inserting Wait Times ... 171
 CMR: Enabling/Disabling CMR or CMR+ Messages 172
 CMR,ALL: Disabling All CMR or CMR+ Messages 173
 COO,REF: Entering a Reference Position Manually in a Rover 174
 CST,ON: Starting the Embedded NTRIP Caster 175
 CST,OFF: Stopping the Embedded NTRIP Caster 176
 CST,MTP,ADD: Adding/Modifying Mount Points 176
 CST,MTP,DEL: Deleting a Mount Point 178
 CST,PAR: Embedded NTRIP Caster Parameters 178
 CST,RST: Resetting the Embedded NTRIP Caster 180
 CST,USR,ADD: Adding/Modifying NTRIP Caster Users 181
 CST,USR,DEL: Deleting an NTRIP Caster User 182
 DFC,DEL: Deleting Default Configuration File 182
 DFC,GET: Duplicating the Default Configuration File 183
 DFC,SET: Setting the Default Configuration File 184
DFC,TST: Testing the Default Configuration File........................185
DDN,PAR: Setting the DynDNS Service185
DDN,SET: Sending the IP Address Manually to DynDNS187
DIF,BDS: Enabling or Disabling BeiDou Correcting Data.........187
DIF,NET: Specifying the Processing Mode for a Network Rover ...188
DIF,SBA: Specifying Which SBAS Corrections to Use.............189
DIP,OFF: Terminating Direct IP Connection190
DIP,ON: Establishing the Programmed Direct IP Connection....191
DIP,PAR: Setting Direct IP Parameters...............................191
DRD: Data Recording Duration ...193
DRI: Raw Data Recording Rate ...194
DSY: Daisy Chain ...194
DYN: Receiver Dynamics...195
ELM: Setting the Elevation Mask for Raw Data Output196
ENC: Setting Transport Mode for Differential Data197
ETD,PAR: Setting Ethernet Driver Parameters198
ETH,OFF: Powering Off the Ethernet Port199
ETH,ON: Powering On the Ethernet Port199
ETH,PAR: Ethernet Parameters..200
FIL,CPY: Copying Files from Internal to External Memory201
FIL,DEL: Deleting Files and Directories202
FIL,GET: Downloading a File Thru the Current Port203
FIL,WRT: Writing a File..205
FMT: Formatting Internal Memory or SD Card207
FTP,OFF: Ending Data Transfer with FTP207
FTP,PAR: FTP Settings ..208
FTP,PUT: Uploading Files to FTP..209
GAL: Galileo Tracking ...211
GEM: Choosing a Geoid Model ..212
GLB: Choice of Antenna Input for L-Band Reception212
GLO: GLONASS Tracking ..213
GLx: Tracking Signals in Different Bands214
<GNS>,USE: Enabling or Disabling the Tracking of a GNSS Satellite ..215
GPS: GPS Tracking...217
GSF: Enabling/Disabling GSOF Messages217
GSF,ALL: Disabling all GSOF Messages on a Port218
INI: Resetting Receiver According to Your Preference219
LBN,BEM: Additional Settings for User-Added L-Band Satellite..220
LBN,SAT: Adding a New L-Band Satellite222
LBN,USE: Tracking L-Band Providers/Geo-satellites223
LCK,MOD: Controlling Receiver Lock224
LCK,OFF: Unlocking the Receiver225
LCK,ON: Locking the Receiver ...226
LCS: Enabling/Disabling Use of Local Coordinate System227
LOG,DEL: Deleting Log Files ...228
LOG,PAR: Log File Settings ..228
RFM: Enabling/Disabling Ring File Memory 283
RST: Default Settings .. 284
RT2: Enabling/Disabling RTCM 2.3 Messages 285
RT2,ALL: Disabling All RTCM 2.3 Messages 286
RT3: Enabling/Disabling RTCM 3.1 Messages 287
RT3,ALL: Disabling All RTCM 3.2 Messages 289
RTK: Running RTK Processing on Set Baselines 289
RTK,RST: Resetting RTK or RTX Computation 290
RTK,STI: Defining Which Base Data Stream to Use 291
RTX,DTM: RTX Datum Transformation 292
RTX,KPI: Entering Known RTX Initialization Point 295
RTX,MOD: Specifying the RTX Corrections Service Used 297
RTX,RST: Resetting RTX Position Computation 298
RTX,SRC: Specifying RTX Corrections Source 299
RXC,PAR: Setting the Embedded RINEX Converter 301
RXC,RUN: Converting a G-File into RINEX Files 303
SBA: Enabling/Disabling SBAS Tracking 304
SIT: Defining a Site Name ... 305
SNS: Configuring the M-Sensor .. 305
STI: Defining a Station ID ... 308
TCP,PAR: TCP/IP Server Settings .. 309
TCP,UID: TCP/IP Authentication .. 310
TOP: Defining the Type of Output Position 311
UDP: User-Defined Dynamic Model Parameters 312
UPL,PAR: Setting the Firmware Upgrade Procedure 313
UPL,UPG: Upgrading the Receiver Firmware from FTP 314
VIP: Defining a Virtual Port .. 315
WEB,OWN: Setting Owner Information 316
WEB,PAR: Web Server Control & Administrator Profile 316
ZDA: Setting Date & Time ... 317

Chapter 8. Query Command Library ... 319

Response Format ... 319
ALR: Listing Current Alarms .. 320
ANH: Antenna Height ... 321
ANP: Antenna Parameters ... 322
ANP,OUT: Virtual Antenna .. 323
ANP,OWN: Local Antenna Used .. 323
ANP,RCV: Antenna Name and Offsets of Received Base 324
ANP,REF: Antenna Used at the Base 325
ANR: Antenna Reduction Mode ... 326
ANT: Antenna Height ... 326
ARA: Attitude Rate and Accuracy .. 327
ARR: Vector & Accuracy Data .. 329
AST: Status of Antennas ... 331
ATH: Listing Anti-Theft Parameters .. 332
ATL: Debug Data Recording .. 333
ATT: Heading, Roll and Pitch .. 335
AVR: Trimble Time-Yaw-Tilt-Range Message ...336
BDS: BeiDou Tracking Status ...338
BLN: Reading Baseline Definitions & Status ...339
BRD: Reading RTK Bridge Status ...341
BRV: Reading Relative Mode Status ..341
CAN: CAN Bus Status & Parameters ...342
COO,REF: Base Position ..343
CST: NTRIP Caster Parameters ..344
CST,USR: Listing NTRIP Caster Users ..345
DDM: Differential Decoder Message ...346
DDN: DynDNS Parameters ..348
DDS: Differential Decoder Status ..349
DFC: Reading the Content of the Default Configuration File351
DIF,BDS: BeiDou Correcting Data ..351
DIF,NET: Source of Correction Data Currently Used352
DIF,SBA: Source of SBAS Corrections ..353
DIP: Direct IP Parameters ..354
DRD: Data Recording Duration ...355
DRI: Raw Data Recording Rate ...355
DSY: Daisy Chain Status ..356
DTM: Datum Reference ..357
DTH: Dithering Mode Status ...358
DYN: Receiver Dynamics ...359
ELM: Elevation Mask ...360
ETD: Reading Ethernet Driver Parameters ..360
ETH: Ethernet Status and Parameters ..361
FIL,CUR: Information On G-File Being Recorded362
FIL,LST: Listing Files in Receiver Memory or USB Key363
FIL,STS: Memory Status ...364
FTP: FTP Status and Settings ...365
GAL: GALILEO Tracking Status ..366
GBS: GNSS Satellite Fault Detection ..367
GEM: Geoid Model ..369
GGA: GNSS Position Message ...370
GGKx: GNSS Position Message ..372
GLB: Choice of Antenna Input for L-Band Reception373
GLL: Geographic Position - Latitude/Longitude374
GLO: GLONASS Tracking Status ..375
GLx: Checking Which GNSS Signals are Tracked376
GMP: GNSS Map Projection Fix Data ..377
GNS: GNSS Fix Data ...379
GPS: GPS Tracking Status ..380
GRS: GNSS Range Residuals ...381
GSA: GNSS DOP and Active Satellites ...382
GST: GNSS Pseudo-Range Error Statistics ...385
GSV: GNSS Satellites in View ...386
HDT: True Heading ..388
Chapter 9. DCOL Commands & GSOF Messages 485

Introduction .. 485

06h: GETSERIAL ... 486
07h: RETSERIAL ... 486
4Ah: GETOPT ... 488
48h: RETOPT ... 489
54h: GETSVDATA ... 492
55h: RETSVDATA ... 494
64h: APPFILE ... 496
Chapter 1. Introduction

Introduction

The Trimble MB-Two is the successor to the Trimble MB-One OEM receiver module. The MB-Two maintains the identical form-factor as its predecessor and offers customers a drop-in replacement to utilize the latest GNSS design innovations. Versatile, powerful, compact and smart; the Trimble MB-Two provides faster Dual Frequency based Heading acquisition and an improved positioning engine with additional GNSS signals. In addition, two MB-Two modules may be used for Precise Platform Positioning using data from three antennas for precise position and attitude.

- **Advanced Features with Z-Blade Technology**: The MB-Two allows a wide range of option-upgradable GNSS configurations, from single frequency (GPS, SBAS) to dual frequency GNSS (GPS, QZSS, GLONASS, BeiDou, Galileo). Trimble’s patented Z-Blade technology drives a powerful GNSS agnostic engine allowing the MB-Two to use any GNSS system for positioning, without any dependency on GPS. The GNSS engine utilizes over-the-air satellite corrections via embedded L-Band hardware to achieve centimeter/decimeter level accuracy with Trimble RTX corrections. With worldwide availability of RTX corrections, the MB-Two delivers centimeter level positioning without a dedicated base station.

- **Dual-Antenna Input for Heading+Pitch or Roll**:
 - GNSS Heading + Pitch or Roll.
 - Fast Time to First Heading (TTFH).
 - Two antenna inputs (SOLO/DUO mode).
 - Single board for RTK/RTX and Heading.
• **Powerful RTK Engine:** The MB-Two has a powerful RTK engine that delivers centimeter-level accuracy for systems using corrections from a local base or RTK network. It also features RTK against a moving base for relative positioning.
 The network RTK capabilities include third-party network corrections such as VRS, FKP, and MAC. The advanced RTK algorithms use all available satellites to compute Heading with baseline length auto calibration together with Pitch or Roll.

• **Next Generation Hardware Design:**
 – Low-power consumption in a compact size
 – Dual Core CPU for optimal performance
 – Web User Interface for ease of use
 – Effective GNSS RF design.
Operating Modes

Referring to the terminology used in $PASH proprietary commands, the MB-Two board can operate in one of the following two modes:

- **SOL mode** (with a single GNSS antenna; “SOL” for SOLO)
- **DUO mode** (with two GNSS antennas).

SOL Mode

In SOL mode, the board consists of a single L1/(L2+L3) GNSS sensor, which serves either antenna input #1 or antenna input #2.

The SOL mode is the board’s default operating mode. It can also be selected after running the $PASH,SNS command as follows:

```
$PASH,SNS,SOL[,d2]
```

Where:

- **d2= 1** means the GNSS sensor always serves antenna input #1.
- **d2= 2** means the GNSS sensor always serves antenna input #2.
- **d2= 0** or is left empty means the GNSS sensor serves the detected antenna, or if two antennas are detected, it serves antenna input #1.

So when the board is operated in default mode, you don’t have to worry about which antenna input should be used. Just connect your GNSS antenna to any of the two inputs and your application will work in all cases.

In SOL mode, you are allowed to choose the GNSS signal tracking mode using the $PASH,OBS command. Possible choices are “ALL”, for all signals tracked, or “OPT” to let the board choose the best signals available.

In SOL mode, power consumption is less than in DUO mode.

In SOL mode, the board can deliver:

- Conventional, autonomous DGNSS/DSBAS positioning
- Conventional DGNSS/RTK base functionality
- Conventional RTK function against physical/virtual base or reference network
- Conventional PPP (Trimble RTX) function using L-band or IP reference data (only with antenna input #1)
- RTK against moving base
- Heading/attitude against external sensor data
DUO Mode

The DUO mode can be used only if firmware option [D] or [E] has been installed in the board.

In DUO mode, the board consists of two GNSS sensors, one per antenna input. The GNSS sensor serving antenna input #1 is always L1/(L2+L3).

The DUO mode is NOT the board’s default operating mode so it can only be implemented after running the $PASHS,SNS command as follows:

$PASHS,SNS,DUO[,d2]

Where:

- d2= 1 means the GNSS sensor serving antenna input #2 is L1 only.
- d2= 2 means the GNSS sensor serving antenna input #2 is L1/(L2+L3).
- d2= 0 or is left empty is equivalent to setting d2 to “1”.

Basically, more power is consumed in this mode than in SOL mode.

In DUO mode, only the GNSS sensor serving antenna input #1 is allowed to track L-band signals, provided d2= “0” or “1” or is empty. L-band tracking is not allowed for d2=“2”.

Reminder: L-band signal tracking allows the board to provide Trimble RTX positioning using correcting data from a geosatellite.

In DUO mode, the board will always operate using the best signals available, meaning you are NOT allowed to change the GNSS signal tracking mode using the $PASHS,OBS command. In DUO mode, L-band signal tracking is unconditionally set to “OPT”.

After the DUO mode has been selected, the Blade engine automatically starts computing the heading for the vector oriented from antenna #2 to antenna #1.

By default, when antenna input #2 is L1 only (d2= 1), first the heading process goes through a calibration stage to determine the baseline length. Then the process is constrained with the computed baseline length to improve the performance of the L1-only heading computation. This is called computing heading in Fixed mode.

By default, when antenna input #2 is L1/(L2+L3) (d2= 2), the heading is computed without the need to determine the baseline length through a prior calibration stage. This is called computing heading in Flex mode.
However, additional commands exist to:

- Switch from flex to fixed and vice versa ($PASH,3DF$)
- Ask for baseline length calibration ($PASH,3DF,CLB$)
- Enter the baseline length manually ($PASH,3DF,V12$)

In DUO mode, for both antennas simultaneously, the board can deliver:

- Conventional, autonomous DGNSS/DSBAS positioning
- Conventional DGNSS/RTK base functionalities
- Conventional RTK function against physical/virtual base or reference network
- Conventional PPP (Trimble RTX) function using L-band or IP reference data (only with antenna input #1)
- RTK against moving base
- Heading for vector from antenna #2 to antenna #1
- Heading/attitude against external sensor data
- Different combinations of the above

Selecting the Operating Mode From the Web Server

Go to Receiver> Position> Sensors/Antennas Setup. Make your choice of operating mode in the Multiple-Sensor Mode field. The available options reflect the explanations provided in the above two subsections, but using a slightly different terminology:

- **Single Antenna (automatic):** SOL mode where the best antenna input is used (default).
- **Single Antenna (primary):** SOL mode, antenna input # 1 (primary antenna) is used.
- **Single Antenna (secondary):** SOL mode, antenna input # 2 (secondary antenna) is used.
- **Double Antenna (L1/L2/L-band+L1):** DUO mode, GNSS sensor serving antenna input #2 is L1 only.
- **Double Antenna (L1/L2 + L1/L2):** DUO mode, GNSS sensor serving antenna input #2 is L1/(L2+L3), just like GNSS sensor serving antenna input #1.

In DUO mode, to choose between “fixed” and “flex”, ask for baseline calibration or enter the baseline length, go to Receiver> Position> Attitude/Heading Setup and make your changes within the Vector Description pane.
MB-Two Top and Bottom Views

Top view:

Bottom View:

List of Items

The tables below provide an overview of the different items that may be delivered with an MB-Two board. Depending on your purchase, only some of the listed items may have been shipped. Please refer to the packing list for an accurate description of the items that were ordered.

Trimble reserves the right to make changes to the list below without prior notice.
Basic Supply

MB-Two board, in one of the following configurations:
- "Stock" product (hardware only)
- Autonomous, SBAS & DGPS Positioning, GPS L1, 2 Hz, DGPS Rover*
- Raw Data Version with L1 GPS / GLONASS, 2 Hz, DGPS Rover*
- L1-only Heading Rover (GPS / GLONASS), DGPS Base/Rover*, 20 Hz
- RTK Rover L1/L2 GPS/GLONASS, 20 Hz
- RTK Base Station Only (With Moving Base Capability), 2 Hz
- Full Capability RTK Moving Base L1/L2 GPS / BeiDou, 2 Hz
- L1 + L2 GPS / GLONASS Heading Rover, DGPS Base/Rover, 20 Hz
- L1/L2 GPS + B1/B2 BeiDou Heading Rover, DGPS Base/Rover*, 20 Hz
- RTK Rover L1/L2 GPS + B1/B2 BeiDou, 20 Hz
- Full Capability RTK Base/Rover (Moving Base + Rover) with L1/L2 GPS/GLONASS + B1/B2 BeiDou, 20 Hz
- Full Capability RTK Base/Rover with 3D Attitude Support Triple Frequency (GPS/GLONASS/BeiDou), 20Hz
- RTK Rover L1/L2 GPS/GLONASS, 20Hz, 30/30 Dithering
- RTK Rover L1/L2 GPS/GLONASS, 20Hz, 10/10 Dithering
- RTK Rover L1/L2 GPS/GLONASS, 20Hz, 7/2 Dithering

Recommended GNSS Antennas

<table>
<thead>
<tr>
<th>Item</th>
<th>Part No.</th>
<th>Picture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trimble AV28 antenna, L1/L2/L5 GNSS + L Band aviation/marine/machine, Not TSO certified, 37 dB gain</td>
<td>112735</td>
<td></td>
</tr>
<tr>
<td>Trimble AV33 antenna, L1 GNSS compact aviation/marine/machine, 43 dB gain</td>
<td>83553</td>
<td></td>
</tr>
</tbody>
</table>

*: Limited DGNSS available.
**: Also include the following options: SBAS, PPS, Event, Multipath Mitigation.
<table>
<thead>
<tr>
<th>Item</th>
<th>Part No.</th>
<th>Picture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trimble AV34 antenna, L1/L2 GNSS compact aviation/marine/machine, 43 dB gain</td>
<td>86362</td>
<td></td>
</tr>
<tr>
<td>Trimble AV59 antenna, L1/L2/L5 GNSS + L-Band aviation/marine/machine, not TSO certified, 39 dB gain</td>
<td>C02992</td>
<td></td>
</tr>
<tr>
<td>Trimble LV59 antenna, L1/L2/L5 GNSS + L-Band aviation/marine/machine, not TSO certified, 5/8" mount, 39 dB gain</td>
<td>C03167</td>
<td></td>
</tr>
<tr>
<td>Zephyr Model 3, L1/L2/L5 Base</td>
<td>115000-50-INT</td>
<td></td>
</tr>
<tr>
<td>Zephyr Model 3, L1/L2/L5 Rover</td>
<td>105000-50-INT</td>
<td></td>
</tr>
<tr>
<td>L1/L2 Aviation Antenna (TSO certified)</td>
<td>C02817</td>
<td></td>
</tr>
<tr>
<td>Trimble AG25 L1/L2/L5 L-Band Antenna</td>
<td>99038-00-INT</td>
<td></td>
</tr>
</tbody>
</table>
Antenna Accessories

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Part No.</th>
<th>Picture</th>
</tr>
</thead>
<tbody>
<tr>
<td>5m TNC-TNC Antenna Cable</td>
<td>58957-05-INT</td>
<td></td>
</tr>
<tr>
<td>10m TNC-TNC Antenna Cable</td>
<td>A02500</td>
<td></td>
</tr>
<tr>
<td>30m TNC-TNC Antenna Cable</td>
<td>A02501</td>
<td></td>
</tr>
<tr>
<td>CBL ASSY TNC-MMIX</td>
<td>A02584</td>
<td></td>
</tr>
<tr>
<td>Zephyr mounting bracket</td>
<td>F00922</td>
<td></td>
</tr>
<tr>
<td>AV33/34 antenna bracket</td>
<td>B4902</td>
<td></td>
</tr>
<tr>
<td>Mag mount with 5/8” x 11 bolt</td>
<td>B6693</td>
<td></td>
</tr>
</tbody>
</table>

Evaluation Kit

<table>
<thead>
<tr>
<th>Item</th>
<th>Part No.</th>
<th>Picture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Includes:</td>
<td>102926-00</td>
<td></td>
</tr>
<tr>
<td>• Evaluation PCBA with two Antenna Cable Adaptors (MMCX-RA / TNC-F)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Power supply (19 V DC, 3.42 A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Universal power supply cable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 5 spare jumpers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Utility Software (AshCom) downloadable from:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Introduction

Firmware Options

Update Rates (computed data, raw data):

<table>
<thead>
<tr>
<th>Option Code</th>
<th>Short Descr.</th>
<th>Part No.</th>
<th>Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>[5]</td>
<td>5 (5 Hz)</td>
<td>101530-13</td>
<td>Output rate up to 5 Hz (includes 1, 2 and 5 Hz)</td>
</tr>
<tr>
<td>[W]</td>
<td>W (20 Hz)</td>
<td>101530-10</td>
<td>Output rate up to 20 Hz (includes 1, 2, 5, 10, 20 Hz)</td>
</tr>
<tr>
<td>[8]</td>
<td>8 (50 Hz)</td>
<td>101530-12</td>
<td>Output rate up to 50 Hz (includes 1, 2, 5, 10, 20 and 50 Hz)</td>
</tr>
</tbody>
</table>

Installing one of these firmware options using
$PASHS,OPTION is not enough to make the new update rate effective for your messages. You will then have to apply the new update rate to the board’s internal processes using the $PASHS,POP command (be aware this results in resetting the update rate of all your existing messages to their default values - see $PASHS,POP command), and finally re-define the update rate of each of your existing messages.

GNSS Tracking:

<table>
<thead>
<tr>
<th>Option Code</th>
<th>Short Descr.</th>
<th>Part No.</th>
<th>Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>[N]</td>
<td>N (GPS)</td>
<td>101530-23</td>
<td>GPS+QZSS+QZSS constellations</td>
</tr>
<tr>
<td>[O]</td>
<td>O (GLN)</td>
<td>101530-20</td>
<td>GLONASS constellation</td>
</tr>
<tr>
<td>[B]</td>
<td>B (BDS)</td>
<td>101530-21</td>
<td>BeiDou constellation</td>
</tr>
<tr>
<td>[O]</td>
<td>O (GAL)</td>
<td>101530-22</td>
<td>Galileo constellation</td>
</tr>
</tbody>
</table>

GNSS Frequency Bands:

<table>
<thead>
<tr>
<th>Option Code</th>
<th>Short Descri.</th>
<th>Part No.</th>
<th>Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Y]</td>
<td>L2</td>
<td>101530-30</td>
<td>GPS/QZSS L2, GLONASS G2, GALILEO E5b, BEIDOU B2</td>
</tr>
<tr>
<td>[L]</td>
<td>L-Band</td>
<td>101530-70</td>
<td>L-band reception</td>
</tr>
</tbody>
</table>
Board Configuration:

<table>
<thead>
<tr>
<th>Option Code</th>
<th>Short Descr.</th>
<th>Part No.</th>
<th>Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>[K]</td>
<td>K (RTK Base)</td>
<td>101530-40</td>
<td>Enables the output of all differential protocols (RTCM, CMR and ATOMl) for RTK operation. Being always enabled, standard DGPS differential messages (including those in standard or full ATOM protocol) are not tied to this option.</td>
</tr>
<tr>
<td>[F]</td>
<td>F (Flying RTK)</td>
<td>101530-41</td>
<td>Enables the board to deliver a “Flying RTK” position solution.</td>
</tr>
<tr>
<td>[J]</td>
<td>J (RTK Rover)</td>
<td>101530-42</td>
<td>Enables the board to deliver a “Fixed RTK” position solution (so this option includes the [F] option), an RTK position solution computed from a static/moving base.</td>
</tr>
<tr>
<td>[D]</td>
<td>D (Duo)</td>
<td>101530-51</td>
<td>Dual-sensor mode: Enables the board to deliver heading between the two antennas connected to the board. Also enables the board to deliver an independent RTK position solution for each antenna connected to the board (in which case the [J] option is also required). The board can also generate raw data from each of the two sensors. NOTE: With only the [D] option installed, the board cannot make heading measurements through an association with an external receiver.</td>
</tr>
<tr>
<td>[E]</td>
<td>A (Attitude)</td>
<td>101530-50</td>
<td>Enables the board to deliver attitude measurements provided the appropriate data are applied to the board. Option [E] includes option [D]. If you have purchased option [E], you don’t need to purchase option [D]. Also allows the board to compute an external heading if another board is used as a moving base, providing the required corrections for computing heading.</td>
</tr>
</tbody>
</table>
Other Options:

<table>
<thead>
<tr>
<th>Option Code</th>
<th>Short Descr.</th>
<th>Part No.</th>
<th>Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>[I] I (RAIM)</td>
<td>101530-60</td>
<td>Enables output of RAIM-related messages (Same as MBxxx series)</td>
<td></td>
</tr>
<tr>
<td>[R]</td>
<td>101530-61</td>
<td>Data recording</td>
<td></td>
</tr>
<tr>
<td></td>
<td>101530-25</td>
<td>MB-Two Field Configuration Upgrade</td>
<td></td>
</tr>
<tr>
<td></td>
<td>97768-EW-1</td>
<td>1-year extended warranty on MB-Two</td>
<td></td>
</tr>
<tr>
<td></td>
<td>97768-EW-2</td>
<td>2-year extended warranty on MB-Two</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: An MB-Two board that returns "This is a STOCK product, to enable GNSS tracking and data you must purchase activation code" when queried about its firmware options currently installed (using $PASHQ,RID) is a "stock" product.

That means the board was purchased just for its hardware and has no firmware options installed yet (the board is unable to track any GNSS signals and can only respond to $PASHQ,RID).

The board is however ready for adding the new firmware options you will purchase, using the MB Loader software, the Web Server or command $PASHS,OPTION.

Specifications

GNSS Engine
- 240 tracking channels.
- Two tightly coupled, all-in-view GNSS sensors delivering simultaneously:
 - GPS L1+L2
 - QZSS L1+L2
 - BeiDou B1+B2 (Phase III satellites supported)
 - GLONASS G1+G2 FDMA (1)
 - GALILEO E1+E5b
 - SBAS L1 (2)
- 2 x MSS L-Band Tracking Channels

Features
- Ashtech patented Strobe Correlator™ to reduce GNSS multi path
- Ashtech patented Z-tracking to track encrypted GPS P(Y) signal
Ashtech patented Z-Blade technology to process multi-GNSS data

- GPS-only, GLONASS-only, Beidou-only or Galileo-only solutions possible (from Autonomous to full RTK)
- Fast Search Engine to improve TTFF
- Position in local datums and projections with RTCM-3 transformation data
- Trimble RTX™ PPP engine
- Ashtech Hot Standby RTK Algorithms
- Ashtech Flying RTK Algorithms
- Full attitude engine with two MB-Two boards connected
- RTK with Static & Moving Base corrections supported
- Heading engine with optional baseline length self-calibration
- Multi-dynamic mode (static/moving Base and Rover functions simultaneously)
- Adaptive velocity filter to meet specific dynamic applications
- Up to 250 MB of internal memory for data logging; on-board memory for various applications
- Up to 50 Hz position/velocity/heading/observables output (3)
- Reference Inputs/Outputs: RTCM 3.3 (4), RTCM2.3, CMR (5), CMRx (5), ATOM (6).
 - CMR (including CMR+) is an open format. The board supports CMR both in rover and base modes (GPS+GLONASS).
 - CMRx is an encrypted format. The board supports both the rover mode and base mode (all constellations). CMRx data part of Hot Standby RTK mode.
 - sCMR in rover mode only
- RTK Networks Supported: VRS, FKP, MAC
- Navigation Outputs: NMEA-0183, GSOF, NMEA 2000, ATOM format
- One-push Ashtech Trouble Log (ATL)
- Programmable startup protection
- Embedded RINEX converter (supports dual-antenna mode)
Introduction

GNSS Sensor Performance

- Position accuracy (HRMS), SBAS: 0.50 m (7)
- Update rate: Up to 50 Hz
- Latency: < 10 ms (8)
- Cold start: <60 seconds
 (No ephemeris or almanac data, no last computed position, reception channels reset and processor restarted.)
- Warm start: <45 seconds
 (Last computed position known, but no ephemeris data, reception channels reset and processor restarted.)
- Hot start: <11 seconds
 (Valid almanac information at board startup)
- Signal re-acquisition: <2 seconds
 (Following temporary but complete GNSS signal loss.)
- Maximum operating limits:
 - Velocity: 515 m/s
 - Altitude: 18,000 m

Precise Positioning Performance

RTK

L1 only (fixed ambiguity):
- Accuracy (HRMS): < 12 mm + 1.5 ppm
- Initialization time: < 10 min typical
- Operating range: < 10 km

L1/L2 (fixed ambiguity):
- Accuracy (HRMS): 8 mm + 1 ppm
- Initialization time: < 1 min typical
- Operating range: > 40 km

RTX

CenterPoint:
- Accuracy (RMS): < 4 cm
- Initialization time: < 30 min. typical
- Operating range (inland): Almost unlimited

RangePoint:
- Accuracy (RMS): < 50 cm
- Initialization time: < 5 min
• Operating range (inland): Almost unlimited

HEADING

(10) (14) (15)

• Accuracy (RMS): Depends on the baseline length used. See table below.

<table>
<thead>
<tr>
<th>Baseline length (m)</th>
<th>Accuracy (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>0.1</td>
</tr>
<tr>
<td>3</td>
<td>0.087</td>
</tr>
<tr>
<td>5</td>
<td>0.04</td>
</tr>
<tr>
<td>10</td>
<td>0.02</td>
</tr>
</tbody>
</table>

• Initialization time: < 10 s typical
• Baseline length: <100 m

Physical Characteristics

• Size (W x H x D): 71 x 46 x 11 mm
• Power Voltage: 3.2 to 4.5 V DC
• Power Consumption (16): < 1.2 W
• Weight: 24 g (0.85 oz)
• Connectors:
 – I/O: 28-pin dual-row male header
 – Antennas: 2 x MMCX female connectors
• Antenna LNA Power Input:
 – Input voltage range: 4.0 to 12.0 V DC on I/O connector pin 5 (17). This input voltage will be used if greater than the main power input voltage. If not, the main power input voltage will be used to power the antenna LNA as well.
 – Maximum current 150 mA
 – Minimum current 5 mA
 – LNA gain range (minus signal loss): 17 to 37 dB

Environmental Characteristics

(18)

• Operating temperature: -40° to +85°C (-40° to +185°F)
• Storage temperature: -40° to +85°C (-40° to +185°F)
• Vibration: MIL-STD-810F, Fig 514.5C-17, Random 6.2g RMS operating, Random 8g RMS survival
• Mechanical Shock: MIL-STD 810F, Fig 516.5-10 (40g, 11 ms, sawtooth)
• Operating Humidity: 95%, non-condensing
• Maximum Acceleration: 11g
Introduction

I/O Interface

- SAMTEC 28-pin I/O connector (TMM-114-03-G-D) with backward compatibility for current industry standards
- 3 x LV TTL serial ports (UART type) at up to 921,600bps
- USB 2.0 OTG port allowing up to 12 Mbps (USB/Serial Link, USB Memory Stick, On-board Memory Access)
- CAN bus interface
- 1 PPS Out / Event In (accuracy better than 20 ns)
- 1 LAN Ethernet port:
 - Supports links to 10BaseT/100BaseT networks
 - All functions are performed through a single IP address simultaneously – including web GUI access and raw data streaming
 - Network Protocols supported:
 - HTTP (web GUI)
 - N TripCaster, N TripServer, N TripClient
 - Dynamic DNS
 - N TP Server
 - TCP/IP or UDP/IP

Recommended Antennas

- Compact GNSS Machine/Marine/Aviation Antennas: Trimble AV33 & AV 34
- GNSS Machine/Marine/Aviation Antennas: Trimble AV59 & LV59

Configuration Tool

AshCom (Ashtech Communicator) is a GNSS utility for boards and sensors evaluation and configuration:

- Preset command scripts
- Real-time data logging
- Real-time data visualization

(1) Hardware ready for G1 and G2 CDMA. This is based on the assumption that these new signals will be transmitted within natural GLONASS L1, L2 or within GPS L1/L2 frequency bands.
(2) In some modes, SBAS L1 is available only for single sensor.
(3) At 50 Hz, a limited set of messages can be generated simultaneously through a single port.
(4) RTCM 3.3 and lower versions (down to 3.0). In this manual, you will see a lot of mentions of RTCM v3.1 and 3.2 messages specifically, but remember these can all be regarded as RTCM3.3 messages. RTCM-3.2 and 3.3 Multiple Signal Messaging (MSM) guarantees compatibility with 3rd party for each GNSS data.
(5) A Trimble proprietary format.
(6) ATOM: Open Ashtech format.
(7) VRMS for Autonomous/SBAS positions are usually twice as high as HRMS
(8) Heading latency is usually twice as high.

(9) VRMS = 2 x HRMS

(10) Accuracy and TTFF specifications may be affected by atmospheric conditions, signal multipath, satellite geometry and corrections availability and quality.

(11) Same for single base and network.

(12) Requires L1/L2 GPS/GLONASS at a minimum.

(13) Accuracy and TTFF specifications may be affected by atmospheric conditions, signal multipath, satellite geometry and L-band service availability. Trimble RTX correction services are only available on land.

(14) L1/L2 data required.

(15) Figures of pitch accuracy are twice as high.

(16) Typical power consumption for single antenna L1 GPS/GLONASS.

(17) This will be used if greater than the main power input voltage.

(18) Dependent on appropriate mounting / enclosure design

NOTE: All performance values are given assuming a minimum of five satellites are used, and following the procedures recommended in the product manual. High multipath areas, high PDOP values and periods of severe atmospheric conditions may degrade performance.

Board Layout and Dimensions

Board overall dimensions (W x H x D): 71.1 x 45.7 x 8.8 mm
(2.8 x 1.8 x 0.34 inches)

The board can be secured onto a chassis of your choice through 4 holes dia. 3.6 mm (Use M3 threads preferably).
The above diagram (top and side views) gives all the dimensions (in mm) to allow you to perform this operation.

I/O Connector Pin Out

Connector type: 28-pin SAMTEC TMM-114-03-G-D

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
<th>Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>USB_ID</td>
<td>Input</td>
<td>Provides distinction between A-device and B-device
• A-device: To be connected to signal ground
• B-device: Keep open (not connected)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>USB_VBUS</td>
<td>Output</td>
<td>+5 V USB Power output
For A-device only (host)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BOOT</td>
<td>Input</td>
<td>Boot mode selection
Used for service purpose only.
Normal use: Leave unconnected.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>TPO-MID</td>
<td>Power</td>
<td>+3.3 V Ethernet
To be connected to center tap of Ethernet magnet-
ics</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>LNA_PWR</td>
<td>Power</td>
<td>Antenna power input
Input voltage range: 4.0 to 12 V DC</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3V3</td>
<td>Power</td>
<td>Supply voltage input
Input voltage range: 3.2 to 4.5 V DC</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>USB_D-</td>
<td>I/O</td>
<td>USB Data -
To be routed as a 90-ohm differential pair if USB is
required (please use same length for the pair of
wires)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>USB_D+</td>
<td>I/O</td>
<td>USB Data +</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>RESETIN</td>
<td>Input</td>
<td>Reset input (see also NOTE below)
Active low</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>MFO1</td>
<td>Output</td>
<td>Multi-functional (programmable) output #1
LV-TTL, set to “1” by default (LED red)
Functions: RSP, LED, PAV, BDL, OFF</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>MFO2</td>
<td>Output</td>
<td>Multi-functional (programmable) output #2
LV-TTL, set to “1” by default (LED green)
Functions: RSP, LED, PAV, BDL, OFF</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>RXD3/ CANRX/ Bus I2C Data</td>
<td>Input</td>
<td>Multiplexed input
Default output= RXD3</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>EVENT</td>
<td>Input</td>
<td>Event input
LV-TTL (3.3 V) levels.
Includes pull-down resistor.
Pulse width equal to or greater than 500 ns.</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>GND</td>
<td>Power</td>
<td>Signal and Power Ground</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>TXD1</td>
<td>Output</td>
<td>COM1 Transmit Data
LV-TTL (3.3 V) levels (Port A)</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>RXD1</td>
<td>Input</td>
<td>COM1 Receive Data
LV-TTL (3.3 V) levels (Port A)</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>GND</td>
<td>Power</td>
<td>Signal and Power Ground</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>TXD2</td>
<td>Output</td>
<td>COM2 Transmit Data
LV-TTL (3.3 V) levels (Port B)</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>RXD2</td>
<td>Input</td>
<td>COM2 Receive Data
LV-TTL (3.3 V) levels (Port B)</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>GND</td>
<td>Power</td>
<td>Signal and Power Ground</td>
<td>-</td>
</tr>
<tr>
<td>21</td>
<td>PV</td>
<td>Output</td>
<td>“Position Valid” indicator
Active high (PV= PAV, GPIO, LV-TTL)</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>GND</td>
<td>Power</td>
<td>Signal and Power Ground</td>
<td>-</td>
</tr>
<tr>
<td>23</td>
<td>PPS</td>
<td>Output</td>
<td>PPS Output
LV-TTL (3.3 V) level</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>TXD3/ CANTX/ Bus I2C Clock</td>
<td>Output</td>
<td>Multiplexed output
Default output= TXD3</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>TPO-</td>
<td>Output</td>
<td>Ethernet twisted pair output +
to be connected to Ethernet Magnetics TD+</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>TPI+</td>
<td>Input</td>
<td>Ethernet twisted pair input +
to be connected to Ethernet Magnetics RD+</td>
<td></td>
</tr>
</tbody>
</table>
NOTE: The reset signal on Pin 9 will not reset the configuration to the factory defaults.

Pin 9 controlling the hardware reset of the CPU, it is recommended to use it only when the board hangs up. Note that the reset button on the Evaluation Board connects pin 9 to ground.

The $PASHS,RST reset command turns all the factory settings to defaults, including the baud rate of each port. Sending a reset signal on pin 9 is similar to using the PASHS,INI,0 command. The CPU restarts, but all the settings are kept in the non-volatile memory and applied again right after restart. Therefore, the board will retain the baud rate changes as well as any messages that have been enabled.

LED Indicator

A single LED indicator (see location on 6) allows you to monitor the board power status, the satellites received by each antenna, and the current computation status (for raw position and time) pertaining to each antenna, based on the use of different colors, as explained in the table below.

<table>
<thead>
<tr>
<th>Color</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>Power</td>
</tr>
<tr>
<td>Green</td>
<td>GNSS reception</td>
</tr>
<tr>
<td>Orange</td>
<td>Delimiter between GNSS reception for antenna #1 and GNSS reception for antenna #2.</td>
</tr>
</tbody>
</table>

When no raw position and time are calculated yet for any of the two antennas, the sequence of red, green and orange flashes is the following:

1. **One red flash**: Means the board is powered properly.
2. **First sequence of green flashes**: Indicates the number of GNSS satellites received by antenna #1. The number of green flashes is however limited to 5. This means the real number of received satellites is equal to or greater than 5 when you see the green LED flashing fives times in a row.
3. **One orange flash**: Ends the first sequence of green flashes.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
<th>Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>TP0-</td>
<td>Output</td>
<td>Ethernet twisted pair output</td>
<td>To be connected to Ethernet Magnetics TD-</td>
</tr>
<tr>
<td>28</td>
<td>TP1-</td>
<td>Input</td>
<td>Ethernet twisted pair input</td>
<td>To be connected to Ethernet Magnetics RD-</td>
</tr>
</tbody>
</table>
4. **Second sequence of green flashes**: Same as first sequence of green flashes, but this time for antenna #2.
 - **One red flash**: Indicates the beginning of a new sequence of flashes, as just described.

As soon as raw position and time are calculated for one antenna, or the two antennas, the sequence of red, green and orange flashes is the following:
1. **One red flash**: Means the board is powered properly.
2. **Long, solid green sequence**: Raw position and time now computed for antenna #1.
3. **One orange flash**: Ends LED indication for antenna #1.
4. **Long, solid green sequence**: Raw position and time now computed for antenna #2.
 - **One red flash**: Indicates the beginning of a new sequence of flashes, as just described.

Example:

One red flash, long solid green sequence, orange flash, 3 green flashes
Should be interpreted as:
- Raw position and time now computed for antenna #1
- Three satellites received by antenna #2

If the board is powered and there is not a single satellite received yet, the LED indicator will uniformly flash red then orange until the first satellite is received.

Communication Ports

<table>
<thead>
<tr>
<th>Port</th>
<th>Type</th>
<th>Bit rate</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>UART1</td>
<td>Up to 921 600 b/s</td>
<td>LV-TTL levels</td>
</tr>
<tr>
<td>B</td>
<td>UART2</td>
<td>Up to 921 600 b/s</td>
<td>LV-TTL levels</td>
</tr>
<tr>
<td>C</td>
<td>USB OTG</td>
<td>Up to 12 Mbits/s</td>
<td>Standard USB 2.0</td>
</tr>
<tr>
<td>D</td>
<td>UART3</td>
<td>Up to 921 600 b/s</td>
<td>LV-TTL levels</td>
</tr>
<tr>
<td>M</td>
<td>Internal memory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>USB memory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>CAN</td>
<td>Up to 1 Mbits/s</td>
<td>LV-TTL levels</td>
</tr>
<tr>
<td>I</td>
<td>TCP/IP server</td>
<td></td>
<td>Default port ID: 8888</td>
</tr>
<tr>
<td>P</td>
<td>TCP/IP client</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>TCP/IP client</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>TCP/IP server</td>
<td></td>
<td>Default port ID: 8889</td>
</tr>
</tbody>
</table>

(I and F are server ports while P and Q are client ports.)
Chapter 2. First Steps With the MB-Two

Using the Evaluation Kit

The evaluation kit can be used at the design stage of a given application to test the performance of the board within that application.

Board Layout
List of Items Provided in the Kit

- 1 x Evaluation & Development I/O board
- 1 x DC power supply, 19 V DC, 3 A
- 2 x TNC-f/MMCX-m-right-angle coaxial adapters
- 5 x spare jumpers

Connectors

J1: USB port C is a standard mini male USB 2.0 connector.
J2: Ethernet Port is an RJ45 connector socket (PulseJack™ integrated magnetics connector model J0026D21NL).
J3, J4, J6: RS232 ports A (J3), B (J4) and D (J6) are standard RS232 9-pin Sub-D male-type connectors.

NOTE: Port D is available for use only if you insert jumper J5 on the evaluation kit board.

NOTE: When connecting one of the recommended external radio to an RS232 port on the evaluation kit, please use a crossover cable.

J8: CAN Bus is a Sub-D connector.

J10: Terminal block contains 1PPS, Ext event input, PV, I²C, LNA power. See pinout below.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NC</td>
<td>Not connected</td>
</tr>
<tr>
<td>2</td>
<td>/RESET IN</td>
<td>Reset input (active low)</td>
</tr>
<tr>
<td>3</td>
<td>LNA_PWR</td>
<td>Antenna power input (4.2-12 V DC)</td>
</tr>
<tr>
<td>4</td>
<td>PPS</td>
<td>PPS output (LV-TTL, 3.3 V)</td>
</tr>
<tr>
<td>5</td>
<td>SCL</td>
<td>Bus I²C clock (present only if jumper J12 inserted)</td>
</tr>
<tr>
<td>6</td>
<td>PV</td>
<td>“Position valid” indicator output (active high, LV-TTL, 3.3V)</td>
</tr>
<tr>
<td>7</td>
<td>SDA</td>
<td>Bus I²C data (present only if jumper J12 inserted)</td>
</tr>
<tr>
<td>8</td>
<td>EVENT</td>
<td>Event input (LV-TTL, 3.3 V)</td>
</tr>
<tr>
<td>9</td>
<td>GND</td>
<td>Signal & power ground</td>
</tr>
<tr>
<td>10</td>
<td>GND</td>
<td>Signal & power ground</td>
</tr>
</tbody>
</table>

Connector type: 10-pin SAMTEC HTST-105-01-L-DV.
Use male connector type: 10-pin SAMTEC IDSD or SMSD (not provided).

J13: 9 to 28 V DC Power is a standard jack connector.
Jumpers

The board accommodates four locations for jumpers:

- J5, J11 and J12: Used to make some ports available on connectors. **Warning!** Only one jumper can be inserted at a time on one of these locations:
 - J5 inserted: Makes port D available on COM3.
- J9: Used to choose how to provide antenna LNAs with DC power. See section below.

Providing Antenna LNA With Power

You have three options, depending on how you insert a jumper on J9:

- No jumper set on J9: 3 V DC is provided to the antenna(s).
- Jumper set between pins 1 and 2 on J9 (pin 1 is the closest to the USB connector): The power voltage available on pin 3 (J10) is provided to the antennas. This voltage may be as high as 12 V DC.
- Jumper set between pins 3 and 2 on J9 (pin 3 is the closest to the MB-Two board): The +5 V DC power voltage available on the evaluation board is provided to the antennas.

Choose the option that is suitable for the antennas you are using.

Using AshCom to Communicate with MB-Two

AshCom is a software tool provided in the evaluation kit to communicate with the MB-Two through the Evaluation board. It is provided as a zip file.

Installing AshCom

Install AshCom on your computer as explained below:

- Unzip the zip file on your computer (Windows XP or Windows 7 recommended). The result is a single msi file.
- Run the msi file by double-clicking on it. This starts the installation sequence.
- Press **Next** and choose a folder where to install AshCom.
- Select an installation type: Choose “Typical” and click **Next**.
- Agree to allow the program from an unknown publisher to make changes to the computer. Let the installation assistant complete the sequence.
Find and run AshCom on your computer.

The AshCom main window is described below.

- **1**: Used to set a connection between the computer and the MB-Two.

- **2**: Area in which you can type $PASH commands. Once a command is typed in, press the ENTER key to send it to the MB-Two.

- **3**: Area where you can read the MB-Two response to your command. The html and Graph tabs on top of this area give access to data visualization statuses in graphical form (see on the left).

- **4**: Area in which you can select, edit and run a particular macro. Use the local toolbar (see below) to do this after you have selected the desired macro in the tree-like structure.
First Steps With the MB-Two

• 5: Use this icon to open a command script file. Command scripts are text files with the “sc” extension. A command script is a series of S$PASH commands you want the MB-Two to execute. By running a command script, you will change the configuration of the board so that it meets your requirements. Command scripts may contain the following additional instructions:
 – wait #: Sets an idle/wait time (# expressed in seconds). Useful to let the board respond to the command that precedes in the script.
 – log <filename>.log: Used to start logging data to a file named “<filename>.log”.
 – log: Used to stop data logging.

• 6: Use this icon to start/stop data logging (similar to log instruction in a command script file).

Establishing a Serial Connection with MB-Two

• Install your MB-Two on the Evaluation board.
• Connect the computer to one of the serial ports on the Evaluation board using a serial DB9 cable (not provided).
 Reminder: A jumper on J5 is required to be able to use port D (J6). You may need a USB/Serial converter if your computer is not fitted with a serial DB9 connector.
• Connect the DC power source (provided) to J13 on the Evaluation kit and turn it on.
• Run AshCom on your computer.

In 1, click on the Port drop-down list and select the port ID used on computer side (see also Keeping an Eye on the Computer’s COM Ports Used on page 26).

The default baud rate of the COM ports on MB-Two is 115200 Bd. Make sure this is the selected value in the Baud field.

When the connection is established with the MB-Two, you will read “COM# Connected at 115200 (9)”. You can now start typing in and sending out commands to the MB-Two (refer to Typical Applications Explained on page 35).

Establishing a TCP/IP Connection with MB-Two

• Install your MB-Two on the Evaluation board.
• Connect the Evaluation board’s Ethernet port (J2) to a local network that uses a DHCP server.
First Steps With the MB-Two

• Connect the DC power source (provided) to J13 on the Evaluation kit and turn it on.
• Make a serial connection with the board as described above (Establishing a Serial Connection with MB-Two on page 25). This connection is required to read the IP address allocated to the MB-Two by the local network’s DHCP server.
 Reminder: A jumper on J5 is required to be able to use port D (J6). You may need a USB/Serial converter if your computer is not fitted with a serial DB9 connector.
• When this is done, run the following command in AshCom:
 $PASHQ,TCP
 MB-Two reply example:
 $PASHR,TCP,MOD=1,LGN=Ashtech,PWD=uhJhuz8,ADD=192.34.76.1,
PRT=8888*1B
 (Where the IP address is 192.34.76.1 and port ID is 8888)

• Run a second instance of Ashcom and in 1, click on the Port drop-down list and select TCP/IP.
• Enter the IP address and IP port (always “8888”) provided by $PASHQ,TCP. Wait until the connection is established.

Keeping an Eye on the Computer’s COM Ports Used

To know exactly which of the computer’s serial ports are currently connected to the MB-Two, follow this procedure:
• Click on Windows 7 Start button, move the mouse pointer over Computer, right-click on it and select Manage.
• Click on Device Manager (on the left).
First Steps With the MB-Two

• Click on the right arrow before Ports (COM & LPT). You can now see which ports on the computer are currently used. See example below.

Connecting MB-Two to your Application

This section summarizes the different connections to be made to integrate the board directly into your application. This should be done after you have thoroughly tested the board with the evaluation kit and you have come up with a board configuration that suits your application.

Perform the connections required between the MB-Two and your application following the instructions below and referring to the above diagram.

• [A], [B]: GNSS antenna inputs #1 (J1) and #2 (J2): Female MMCX straight connectors. For each input used, please use a coaxial cable fitted with a male MMCX connector to apply the antenna signal to the board.
In DUO mode, the good performance of the board is guaranteed provided the GNSS signals on inputs [A] and [B] are kept at similar levels. You may check these levels using command $PASHQ,AST. The two levels should be both less than 4095 and not different from each other by more than 750. It is therefore your responsibility to use the suitable antennas and coaxial cables. You may have to use an additional preamplifier or attenuator if one antenna uses a very different length of coaxial cable compared to the other one.

IMPORTANT! Each antenna used should incorporate a built-in LNA (Low-Noise Amplifier). The gain of the LNA minus the signal loss in the coaxial cable connecting the LNA to the MB-Two board should be in the range 17 to 47 dB (for L1 band) and 23 to 50 dB (for L2 band).

A DC voltage is delivered on the center conductor of each GNSS antenna input, which may be either the external DC voltage provided on pin 5, I/O connector (4.0 to 12.0 V DC, see [C] below) if it’s greater than the main power voltage, or the main power voltage otherwise. In this case, the actual DC power voltage applied to the antenna will be the DC voltage present on pin 6 (i.e. 3.2 to 4.5 V DC) minus 0.2 V.

This DC voltage is used to power the antenna LNA when connecting the antenna to the board’s GNSS antenna input. The DC output current is monitored internally from which the antenna status is deduced:

<table>
<thead>
<tr>
<th>Out DC current</th>
<th>Antenna status</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-150 mA</td>
<td>Normal</td>
</tr>
<tr>
<td>> 150 mA</td>
<td>Antenna shorted</td>
</tr>
<tr>
<td>< 5 mA</td>
<td>No antenna connected (or DC power used)</td>
</tr>
</tbody>
</table>

The DC output is also protected from high DC voltages (up to 12 V) that might unintentionally be applied to the GNSS antenna input via the antenna cable.

- **[C]:** I/O connector: A 28-contact connector (see page 18 for connector pinout and type as well as signal specifications). All non-RF connections are routed through this connector. Perform the connections you need for your application:
 - **Communication ports** (A, B, C). Choose the port, or ports, you need for applying serial commands and output the messages you need for your application.
 - **Main power supply.** Used to power the board.
 - Input voltage range: + 3.2 - 4.5 V DC
Power consumption: 1.2 W typical

Power ON/OFF command input available.

- **Antenna power supply**: Used to power one or two of the antennas (and their associated LNAs) connected to the board (4.2 to 12 V DC)
- External event signal input (Event Marker)
- PPS output
- Reset input
- Miscellaneous signals (External LED outputs, etc.).

Precautions Before Turning Off the Board

⚠️ When integrating the MB-Two into your application, make sure that all power-off sequences will be executed this way:

- Apply the command below, followed by a 15-second idle time:

 `$PASHS,PWR,OFF`

 Don't do anything during the next 15 seconds

- Then you can remove power from the board.

If you don't observe this rule or you don't wait long enough after running the command, the board may lose data definitively. See also *PWR,OFF: Powering Off the Board on page 273*.

GNSS Antenna Setup for Heading/Attitude Measurements

Choosing the Baseline Length

In theory, the baseline length (i.e. the horizontal distance between the phase centers of the two GNSS antennas used, also called antenna separation) can be set between 30 centimeters and 20 meters (or more).

In practice, you will choose the baseline length taking into account the level of expected accuracy as well as the various installation constraints in the vehicle.

Heading-Roll-Pitch Offsets

Heading Offset Definition

Ideally, the antennas should be installed to generate a baseline strictly parallel or perpendicular to the vehicle centerline. However, you may also be facing some installation constraints on your vehicle compelling you to install the
antennas differently. The heading offset describes the non-alignment of the baseline with the vehicle centerline. When the baseline is strictly parallel to the centerline and the baseline is oriented in the direction of forward movement, the heading offset is zero. In all other cases, the offset is not zero and should be measured as shown in the diagram below.

The non-alignment of the baseline with the vehicle centerline may be intentional (see explanations further below).

Roll-Pitch Offset Definitions

Ideally, your antennas should be installed at the same elevation. You may however be facing some installation constraints on your vehicle compelling you to install the antennas at different elevations.

If that is the case, you should measure the pitch and roll offsets shown in the diagrams below (three antenna setup) using adequate instrumentation.
Three-Antenna Setup (Attitude)

Two Antenna-Setup (Heading+Pitch), Baseline quasi-parallel to vehicle’s centerline:
If you cannot measure angles directly, but only distances, you can still compute the angles from your distance measurements, as explained below (you however need to measure the heading offset):

- First measure the antenna elevation deviations and the baseline lengths.
- Assuming BL is the value of baseline length projected onto the vehicle's centerline, and BT the value of baseline length projected onto a plane perpendicular to the vehicle's centerline, calculate the pitch and roll offsets as shown in the two diagrams below (offset sign: positive if Antenna #1 is higher than Antenna #2, negative otherwise).

\[
BL = \text{Longitudinal component of Baseline Length} \\
BT = \text{Baseline Length (m) x cos(heading offset)}
\]

\[
|\text{Pitch Offset (°)|} = \arcsin \left(\frac{\text{Elevation Deviation (m)}}{BL (m)} \right)
\]
First Steps With the MB-Two

The pitch and roll offsets should not be greater than 45 degrees (or less than -45 degrees), or the receiver will consider the antenna setup to be invalid and so will not deliver any heading, roll or pitch measurements.

Entering Offsets

Use the $PASHS,3DF,OFS command.

Example: If Heading Offset is +5°, Pitch Offset is +3° and Roll Offset is +6.5° enter these three offsets using the following command:

$PASHS,3DF,OFS,5,3,6.5

If you are using two antennas (i.e. one baseline), depending on how you orientate the baseline with respect to the vehicle’s centerline, i.e. parallel or perpendicular to the vehicle’s centerline (see above), the roll or pitch angle will respectively be zero. To determine the roll or pitch angle when it exists, follow the same procedure as the one described above for three antennas.

With a two-antenna setup, the two possible offset angles are renamed “azimuth offset” (instead of “heading offset”) and “elevation offset” (instead of “roll-pitch offset”).

\[
BT (m) = \text{Baseline Length} (m) \times \sin(\text{heading offset})
\]

\[
\text{Roll Offset} (\degree) = \arcsin \left(\frac{\text{Elevation Deviation} (m)}{BT (m)} \right)
\]
Consider the following four setups before installing your antennas. A ship is shown in the examples but this could be any other type of vehicle.

Depending on the type of measurements you wish the receiver to perform (heading + roll or heading + pitch) and the installation possibilities offered in the vehicle, you will choose the most appropriate setup and set the heading offset accordingly.
Chapter 3. Typical Applications Explained

Preamble

This chapter presents the MB-Two’s typical applications, introducing the underlying proprietary $PASH commands supporting these operating modes. The commands are explained so that you can get a good understanding of the operation principles.

Note: Refer to “Using AshCom to Communicate with MB-Two on page 23” to learn how to send $PASH commands to the MB-Two.

But remember it’s generally easier and faster to use the built-in Web Server rather than working in command mode.

Note: To become familiar with the built-in Web Server, see “Setting the MB-Two from the Web Server on page 71”.

However, while prototyping your MB-Two application, while testing the board before effective implementation in your application, for fine-tuning the board configuration, for some applications going off the beaten track, or for test purposes in general, using the command mode will be proving an essential tool.

Interfacing with the Board

In all the typical applications described in this chapter, follow the instructions in Establishing a Serial Connection with MB-Two on page 25 to communicate with the board using AshCom and a serial connection (in short, AshCom running on computer connected to port D for example; don’t forget to insert jumper J5 on the Evaluation board).
Typical Applications Explained

Preliminary Steps

As a preliminary step to setting up an “unknown” board, it is always a good practice to reset the board, then read some useful information about the board (identification, version, time & date, port settings):

- **Resetting the board:**

 $PASHS,RST

 (Wait about 15 seconds to let the board complete the reset)

- **Reading board identification, installed firmware and installed options:**

 $PASHQ,RID

- **Reading port settings:**

 $PASHQ,PRT

- **Reading time & date:**

 $PASHQ,ZDA

- **Reading firmware version:**

 $PASHQ,VER

- **Reading installed firmware options:**

 $PASHQ,OPT

Still as a preliminary step, some other commands should be routinely executed as well, unless in your application you agree with all the default settings, in which case nothing else needs to be done.

- **Enabling/disabling the tracking of GNSS constellations:** See:

 $PASHS,GPS $PASHS,GLO $PASHS,SBA $PASHS,GAL $PASHS,BDS $PASHS,QZS

- **Antenna settings:** See:

 $PASHS,ANH $PASHS,ANT $PASHS,ANP,OWN/REF $PASHS,ANP,OUT $PASHS,ANR

Note: Refer to chapters 6 and 7 for a detailed description of each command.
Rover Computing RTK Position

• MB-Two will operate with a single sensor (antenna #1 sensor) to provide an RTK solution. This is what we call operating the board in SOLO mode. Use this command to activate the SOLO mode (“SOL” for “SOLO”):

 $PASHS,SNS,SOL

 Important! After you have run this command, the board is in a new operating status, as if you had run the following commands:

 $PASHS,1,BLN,ON,?
 $PASHS,2,BLN,SAM
 $PASHS,3,BLN,SAM
 $PASHS,3DF,OFF
 $PASHS,RTK,ON,1,2,3
 $PASHS,BRV,OFF

• The RTK position will be available by programming this output message (on port D for example, at 1 second):

 $PASHS,NME,GGA,D,ON,1
Rover Computing Internal Heading + RTK Position

Important: Heading is computed based on the reception of L1/L2 GNSS signals, just like RTK position, which is computed using preferably L1+L2 GPS/GLONASS/QZSS signals. You should therefore choose the antennas accordingly.

- MB-Two needs to operate with two internal sensors to compute heading. This is what we call operating the board.
in DUO mode\(^1\). Run this command to activate the DUO mode:

\[
$PASHS,SNS,DUO,2
\]

(The 2 means both antenna inputs are supposed to receive L1+L2 signals)

(For more information, see \textit{SNS: Configuring the M-Sensor} on page 305.)

Important! After you have run this command, the board is in a new operating status, as if you had run the following commands:

\[
$PASHS,2,BLN,ON,2,1
$PASHS,1,BLN,ON,?
$PASHS,3,BLN,SAM
$PASHS,3DF,ON,2
$PASHS,RTK,ON,1,3
$PASHS,BRV,OFF
\]

Auto-calibration will start automatically after the command is ACKed (unless you later enter the vector components of the baseline using $PASHS,3DF,V12..$).

- If you accurately know the components of the baseline vector (example: \(x_{12} = 0.87\) m) and you want to enter them now, use this command:

\[
$PASHS,3DF,V12,0.87
\]

(This will stop the auto-calibration in progress.)

- Conversely, you may consider that the module of the baseline vector may slightly change over time, and want the board to keep on computing heading in this case, i.e. without the need to recalibrate. For this type of application, run for example this command if the baseline used is baseline #1:

\[
$PASHS,3DF,ON,1,FLX
\]

- You may check the current M-sensor status and receiver status using the following command:

\[
$PASHQ,SNS
\]

- Set the output messages you need on any port. These may be one of the following:

 - Heading at 10 Hz on port D:
 \[
 SPASHS,NME,HDT,D,ON,0.1
 \]
 - Vector at 10 Hz on port D:
 \[
 SPASHS,NME,VCT,D,ON,0.1
 \]
 - Heading + Pitch/Roll on port D

\(^1\) In this mode, the "base" sensor provides internally a flow of 10-Hz corrections to the "rover" sensor.
Typical Applications Explained

$PASHS,NME,HPR,D,ON,0.1
Antenna #1 position (standalone) at 1 Hz on port D (NMEA):
$PASHS,NME,GGA,D,ON,1
Antenna #1 position (standalone) at 1 Hz on port D (ATOM):
$PASHS,ATM,PVT,D,ON,1,&COO,ERR,LCY

Same message types, but relevant to Antenna #2 location: Insert "2" after the $PASHS header:
$PASHS,2,NME,...
$PASHS,2,ATM,...

NOTE: When the same types of messages are output on the same port for two different locations (i.e. for antenna #1 and antenna #2), special markers are inserted in the flow of messages so the recipient device can recognize which messages describe which antennas.

Example with GGA messages:
$PASHD,#1,123456.00,ABCD,BEG*cc

$GPGGA,...
$PASHD,#1,123456.00,ABCD,END*cc

$PASHD,#2,123456.00,ABCD,BEG*cc

$GPGGA,...
$PASHD,#2,123456.00,ABCD,END*cc

Each GGA message is inserted between a beginning (BEG) and end (BEG) marker (shown in bold characters in the example above). The marker header indicates for which antenna (or sensor) the GGA message that immediately follows refers to.

For example, a GGA message inserted between two “$PASHD,#1,..” lines means the message is about antenna #1.

If you just want the MB-Two to compute internal heading (and not additionally an RTK position for antenna #1), you don’t need to change anything to the configuration of the board, but simply disconnect the incoming correction stream from the board.
Rover Computing Hot Standby RTK Position

Hot Standby RTK is that process through which the MB-Two internally computes two RTK positions instead of one, but delivers only the best one through the programmed output messages. The important thing to mention here is that the two RTK positions should be computed from two independent correction streams.

If for some reason, one of the two RTK positions happened to be missing, then an internal switching mechanism would make sure the remaining valid RTK solution is always made available at the output.

In the description below, it is assumed that one correction stream enters the board through port A, and the other through port B. This is just an example. You may use different ports in your application.

- MB-Two will operate with a single sensor (antenna #1 sensor). This is what we call operating the board in SOLO mode. Use this command to activate the SOLO mode (“SOL” for “SOLO”):

 \$PASHS,SNS,SOL

 Important! After you have run this command, the board is in a new operating status, as if you had run the following commands:

 \$PASHS,1,BLN,ON,?
 \$PASHS,2,BLN,SAM
 \$PASHS,3,BLN,SAM
Typical Applications Explained

$PASHS,3DF,OFF
$PASHS,RTK,ON,1,2,3
$PASHS,BRV,OFF

- Set the first baseline to use corrections received on port A:
 $PASHS,1,BLN,ON,A,1

- Set the second baseline to use corrections received on port B:
 $PASHS,2,BLN,ON,B,1

- Ask to board to compute RTK positions from baselines 1 and 2:
 $PASHS,RTK,ON,1,2

- In all cases, the RTK position will be available by programming this output message (on port D for example, at 1 second):
 $PASHS,NME,GGA,D,ON,1
Rover Computing Internal Vector

In this application, the MB-Two is connected to two antennas for which you want to continuously measure the three components of the vector connecting the two antennas. Because the two antennas are connected to the same board, the movements of one antenna with respect to the other can only be limited. In addition, the vertical slope of the baseline between two antennas should not exceed 45°.

Important! Vector is computed based on the reception of L1/L2 GNSS signals, just like RTK position, which is computed using preferably L1+L2 GPS/GLONASS/QZSS signals. You should therefore choose the antennas accordingly.
• MB-Two needs to operate in DUO mode, i.e. with its two internal sensors. Run this command to activate the DUO mode:

$PASHS,SNS,DUO,2
(The "2" means both antenna inputs are supposed to receive L1+L2 signals)

(For more information, see SNS: Configuring the M-Sensor on page 305.)

Important! After you have run this command, the board is in a new operating status, as if you had run the following commands:

$PASHS,2,BLN,ON,2,1
$PASHS,1,BLN,ON,?
$PASHS,3,BLN,SAM
$PASHS,3DF,ON,2
$PASHS,RTK,ON,1,3
$PASHS,BRV,OFF

• Disable attitude and RTK computation:

$PASHS,3DF,OFF
$PASHS,RTK,OFF

• Complete the definition of the baseline by making sensor #2 the moving base (the secondary antenna is connected to sensor #2):

$PASHS,1,BLN,ON,2

• Disable baselines #2 and #3:

$PASHS,2,BLN,OFF
$PASHS,3,BLN,OFF

• Enable vector processing over baseline #1 (baseline connecting the secondary to the primary antenna):

$PASHS,BRV,ON,1

• Define the output message that will provide the computed vector, for example on port A at 0.5 second:

$PASHS,NME,VCR,A,ON,0.5

NOTE: You don’t need to define the internal corrections message required from sensor #2. It is automatically generated by the board.
Rover Computing Attitude

NOTE: Vectors are oriented in the opposite direction compared to the Heading setup (see page 38).

This requires firmware option [E] (Attitude) installed on the board computing attitude (board #2).

- Initiate bidirectional communication with board #1 through board #2 using the daisy chain command:

 $PASHS,DSY,B,D

 $PASHS,DSY,D,B

- Configure board #1:

 Enabling use of second antenna:

 $PASHS,SNS,DUO,2

 Disabling the three baseline engines:
Typical Applications Explained

$PASHS,1,BLN,OFF
$PASHS,2,BLN,OFF
$PASHS,3,BLN,OFF
Disabling RTK:
$PASHS,RTK,OFF
Disabling attitude and heading:
$PASHS,3DF,OFF
Requesting generation of 10-Hz corrections stream (moving base) related to antenna #1 (board #2) on port B: Use ATOM format necessarily:
$PASHS,ATM,RNX,B,ON,0.1,&SCN,204
Enabling output message delivering antenna #1 parameters:
$PASHS,ATM,ATR,B,ON
Requesting generation of 10-Hz corrections stream (moving base) related to antenna #2 (board #2) on port B: Use ATOM format necessarily:
$PASHS,2,ATM,RNX,B,ON,0.1,&SCN,204
Enabling output message delivering antenna #2 parameters:
$PASHS,2,ATM,ATR,B,ON

• Configure board #2:
 Set the board in SOLO mode:
 $PASHS,SNS,SOL
 Disabling communication with board #2, restoring communication with board #1:
 $PASHS,DSY,OFF
 Disabling first baseline engine:
 $PASHS,1,BLN,OFF
 Setting second baseline engine to work with corrections stream from board #2, antenna #1 (rear antenna), via board #1’s port B:
 $PASHS,2,BLN,ON,B1
 Setting third baseline engine to work with corrections stream from board #2, antenna #2 (side antenna), via board #1’s port B:
 $PASHS,3,BLN,ON,B2
 Disabling RTK:
 $PASHS,RTK,OFF
 Enabling attitude computation, specifying which baselines are processed:
 $PASHS,3DF,ON,2,3
 Entering coordinates of first vector (will stop auto-calibration in progress):
 $PASHS,3DF,V12,x12,y12,z12
 (V12 refers to baseline from front antenna to rear antenna)
 Entering coordinates of second vector (will stop auto-calibration in progress):
 $PASHS,3DF,V13,x13,y13,z13
 (V13 refers to baseline from front antenna to side antenna)

• Program output messages (heading, attitude) on board #2:
 Enabling heading message at 10 Hz on port D:
 $PASHS,NME,HDT,D,ON,0.1
 Enabling vector message at 10 Hz on port D:
 $PASHS,NME,HPR,D,ON,0.1
• You may define other messages on any port. See examples below:

Position at 1 Hz on port D:
$PASHS,NME,GGA,D,ON,1

Satellite status messages on port D:
$PASHS,NME,GSV,D,ON

Position accuracy messages at 1 Hz on port D:
$PASHS,NME,GST,D,ON,1

Velocity at 1 Hz on port D:
$PASHS,NME,VTG,D,ON,1

Sensor latency at 1 Hz on port D:
$PASHS,NME,LTN,D,ON,1

Position data (standalone) at 1 Hz on port D in binary format (ATOM):
$PASHS,ATM,PVT,D,ON,1,&COO,ERR,LCY

CAUTION: The pitch and roll computed in this configuration are relative values. A reported 0-degree pitch or roll means the angle has not changed since you calibrated the system. It does not mean that the three antennas are all in the same horizontal plane.

You may for example have a setup where two antennas have a pitch or roll offset of 15°. The calibration process assumes that this is the standby position of the antenna setup. Following the calibration, the roll or pitch will stay at zero as long as no change in attitude is detected.

Rover Computing External Vector (Relative Positioning)

Relative positioning consists in computing the changing vector between two moving vehicles. The vehicle in which the
components of the vector need to be known is the rover, and the other one is a moving base.

NOTE: Use a dedicated transmission channel (radio, network, other) through the appropriate ports to transport base corrections to the rover.

To test this application with two evaluation kits, connect the two B ports together using a null modem cable.

Moving Base Configuration
See Moving Base on page 60.

Rover Configuration
Whether the board has been set up in SOLO or DUO mode does not matter, provided you use the following commands to set the rover board (through its port D for example):
 Typical Applications Explained

- Set the baseline dedicated to processing the vector:
 \$PASHS,1,BLN,ON,B,1

- Deactivate the other two baselines:
 \$PASHS,2,BLN,OFF
 \$PASHS,3,BLN,OFF

- Disable RTK position processing:
 \$PASHS,RTK,OFF

- Disable attitude processing:
 \$PASHS,3DF,OFF

- Enable vector processing over baseline #1:
 \$PASHS,BRV,ON,1

- Program the output message that will provide the computed vector, for example on port A at 0.2 second:
 \$PASHS,NME,VCR,A,ON,0.2

Corrections

Transport

In the rover configuration above, the corrections are routed via port B because the example described is based on the use of two Evaluation kits used side by side.

In real-life applications, the two boards will operate at different locations and so you should define another way of transporting the corrections, for example via modem or radio.

On the moving base, you should therefore generate the corrections message to the port connected to the transmitting device, for example port I:

- Observations and kinematic position:
 \$PASHS,ATM,RNX,I,ON,1,&SCN,204

- Receiver and antenna names, other attributes:
 \$PASHS,ATM,ATR,I,ON

On the rover, the first baseline should be defined to use the corrections coming from the port connected to the receiving device, for example port C:

\$PASHS,1,BLN,ON,C

Knowing that you can always let the board find the port receiving the corrections using the "?" symbol instead of the port ID.
Rover Computing Internal Heading and External Vector

You may combine the two applications described in *Rover Computing Internal Heading + RTK Position on page 38* and *Rover Computing External Vector (Relative Positioning) on page 47*. In this case however, no RTK position can be delivered for the rover location.

NOTE: Use a dedicated transmission channel (radio, network, other) through the appropriate ports to transport base corrections to the rover.

To test this application with two evaluation kits, connect the two B ports together using a null modem cable.
• Configure board#1 as a moving base:

$PASHS,SNS,SOL
$PASHS,STI,<Base ID>
$PASHS,ATM,RNX,B,ON,1,&SCN,204
$PASHS,ATM,ATR,B,ON,1

For more details, refer to Moving Base on page 60.

• Configure board#2 as follows:

$PASHS,SNS,DUO,2
$PASHS,3DF,V12,<baseline length>
$PASHS,NME,HDT,D,ON,<output rate>
$PASHS,NME,HPR,D,ON,<output rate>

For more details, refer to Rover Computing Internal Heading + RTK Position on page 38.

• Take these additional steps to complete the setup:

Re-define baseline#3 as follows (assuming corrections from the external moving base enter the board via port B):

$PASHS,3,BLN,ON,B

Enable the relative mode over baseline #3 (vector computed by baseline engine#3):

$PASHS,BRV,ON,3

Disable RTK position processing:

$PASHS,RTK,OFF

Program the output message that will provide the computed vector, for example on port A at 0.5 second:

$PASHS,NME,VCR,A,ON,0.5
Rover Computing External Heading

The board delivering external heading measurements should be fitted with firmware options [J] (or [F]) and [E]. Another MB-Two board configured as a moving base will provide the required connections.

NOTE: Use a dedicated transmission channel (radio, network, other) through the appropriate ports to transport base corrections to the rover. Corrections must be generated in ATM, RNX format.

To test this application with two evaluation kits, connect the two B ports together using a null modem cable.

- Configure board #1 as a moving base:

 $PASHS,SNS,SOL
 $PASHS,STI,<Base ID>
 $PASHS,ATM,RNX,B,ON,1,&SCN,204
 $PASHS,ATM,ATR,B,ON,1

 For more details, refer to Moving Base on page 60.
• Configure board#2 as a rover computing heading, using corrections from an external moving base:
 \$PASHS,SNS,SOL

Important! After you have run this command, the board is in a new operating status, as if you had run the following commands:
 \$PASHS,1,BLN,ON,?
 \$PASHS,2,BLN,SAM
 \$PASHS,3,BLN,SAM
 \$PASHS,3DF,OFF
 \$PASHS,RTK,ON,1,2,3
 \$PASHS,BRV,OFF

Disable RTK processing on all baselines:
 \$PASHS, RTK,OFF

Then define the base and rover data processed in baseline#1 (assuming moving base data enter the board through port B):
 \$PASHS, 1,BLN,ON,B1,1

Then enable the heading processing on baseline#1, specifying the Flex mode to let the board compute heading without having to go through a calibration step:
 \$PASHS,3DF,ON,1,FLX

Then define the desired output messages:
 \$PASHS,NME,HDT,D,ON,<output rate>
or
 \$PASHS,NME,HPR,D,ON,<output rate>
Rover Computing Two Independent RTK Positions (Dual RTK)

Dual RTK allows the board to deliver two RTK positions, one for each of its antennas, using the same source of corrections.

- MB-Two has to operate with two internal sensors, one per antenna:
 \$PASHS,SNS,DUO,2

Important! After you have run this command, the board is in a new operating status, as if you had run the following commands:

 \$PASHS,2,BLN,ON,2,1
 \$PASHS,1,BLN,ON,?
 \$PASHS,3,BLN,SAM
 \$PASHS,3DF,ON,2
 \$PASHS,RTK,ON,1,3 (RTK position processing running on baselines 1 & 3)
 \$PASHS,BRV,OFF (vector processing turned off)

- Assuming you will be using baselines #1 and #3, disable baseline #2:
 \$PASHS,2,BLN,OFF

- Define baseline #3, for which sensor #2 (i.e. the secondary antenna) is used and any incoming corrections are used to compute an RTK position:
 \$PASHS,3,BLN,ON,?,2
• Turn off attitude processing:
 \$PASHS,3DF,OFF

• Set the output messages (typically GGA) that will deliver RTK positions:
 Antenna #1 at 2 Hz on port D:
 \$PASHS,1,NME,GGA,D,ON,0.5
 Antenna #2 at 2 Hz on port D:
 \$PASHS,2,NME,GGA,D,ON,0.5

NOTE: When the same types of messages are output on the same port for two different locations (i.e. for antenna #1 and antenna #2), special markers are inserted in the flow of messages so the recipient device can recognize which messages describe which antennas.

Example with GGA messages:
 \$PASHD,#1,123456.00,ABCD,BEG*cc<CR><LF>
 \$GPGGA,....
 \$PASHD,#1,123456.00,ABCD,END*cc<CR><LF>
 \$GPGGA,....
 \$PASHD,#2,123456.00,ABCD,BEG*cc<CR><LF>
 \$GPGGA,....
 \$PASHD,#2,123456.00,ABCD,END*cc<CR><LF>

Each GGA message is inserted between a beginning (BEG) and end (BEG) marker (shown in bold characters in the example above). The marker header indicates for which antenna (or sensor) the GGA message that immediately follows refers to.

For example, a GGA message inserted between two “\$PASHD,#1,...” lines means the message is about antenna #1.
Typical Applications Explained

Rover Delivering Two External Vectors (Dual Relative RTK)

Dual Relative RTK allows the board to deliver two vectors, one for each of its antennas, using the same source of corrections.

![Diagram of Dual Relative RTK](image)

NOTE: Use a dedicated transmission channel (radio, network, other) through the appropriate ports to transport base corrections to the rover.

To test this application with two evaluation kits, connect the two B ports together using a null modem cable.
Typical Applications Explained

Moving Base Configuration

See Moving Base on page 60.

Rover Configuration

- Set the board to operate in DUO mode (two antennas used):
 \$PASHS,SNS,DUO,2

 Important! After you have run this command, the board is in a new operating status, as if you had run the following commands:
 \$PASHS,2,BLN,ON,2,1
 \$PASHS,1,BLN,ON,?
 \$PASHS,3,BLN,SAM
 \$PASHS,3DF,ON,2
 \$PASHS,RTK,ON,1,3
 \$PASHS,BRV,OFF

- Set the baselines (#1 and #3) dedicated to computing vector 1 and vector 2:
 {Baseline #1 already set thru previous command as: \$PASHS,1,BLN,ON,?}
 \$PASHS,3,BLN,ON,?,2

- Deactivate the second baseline:
 \$PASHS,2,BLN,OFF

- Disable RTK position processing:
 \$PASHS,RTK,OFF

- Disable attitude processing:
 \$PASHS,3DF,OFF

- Enable vector processing over baseline #1 and baseline #3:
 \$PASHS,BRV,ON,1,3

- Program the output message that will provide the computed vectors, for example on port A at 0.2 second:
 \$PASHS,1,NME,VCR,A,ON,0.2
 \$PASHS,2,NME,VCR,A,ON,0.2

NOTE: When the same types of messages are output on the same port for two different sensors (i.e. for antenna #1 and antenna #2), special markers are inserted in the flow of messages so the recipient device can recognize which messages describe which antennas.
Example with VCR messages:

$PASHD,#1,123456.00,ABCD,BEG*cc<cr><lf>
$PASHR,VCR,...
$PASHD,#2,123456.00,ABCD,END*cc<cr><lf>
$PASHR,VCR,...
$PASHD,#2,123456.00,ABCD,BEG*cc<cr><lf>
$PASHR,VCR,...

Each VCR message is inserted between a beginning (BEG) and end (BEG) marker (shown in bold characters in the example above). The marker header indicates for which antenna (or sensor) the VCR message that immediately follows refers to.

For example, a VCR message inserted between two “$PASHD,#1,...” lines means the message is about antenna #1.

In the rover configuration above, the corrections are routed via port B because the example described is based on the use of two Evaluation kits used side by side.

In real-life applications, the two boards will operate at different locations and so you should define another way of transporting the corrections, for example via modem or radio.

On the moving base, you should therefore generate the corrections message to the port connected to the transmitting device, for example port I:

Observations and kinematic position:

$PASHS,ATM,RNX,I,ON,1,&SCN,204

Receiver and antenna names, other attributes:

$PASHS,ATM,ATR,I,ON

Rover Computing RTX Position

Refer to Chapter Trimble RTX Correction Service on page 67.
Typical Applications Explained

Base Configurations

Static Base

Set the board through its port D as a static base:

- Unless already done, set the board to SOLO mode:
 \$PASHS,SNS,SOL

- Enter the base position. Example:
 \$PASHS,POS,5542.00140500,N,03733.71603633,E,205.6450,PC1

- Enter the antenna name. Example:
 \$PASHS,ANP,OWN,TRM55971.00

- Enter the base ID. Example:
 \$PASHS,STI,0001

- Ask the board to generate corrections. Among different possibilities, RTCM-3.2 (MSM) and ATOM are the most important ones.

 If you want to serve third-party rovers, RTCM-3.2 (MSM) is the recommended format. As examples, set the following messages, assuming that the output port used is B and the output rate is 1 second (except for 1033):

 GPS observations:
 \$PASHS,RT3,1074,B,ON,1

 GLONASS observations:
 \$PASHS,RT3,1084,B,ON,1

 Galileo observations:
 \$PASHS,RT3,1094,B,ON,1

MB-Two
Typical Applications Explained

OQSS observations:
$PASHS,RT3,1114,B,ON,1

BDS observations:
$PASHS,RT3,1124,B,ON,1

Static position:
$PASHS,RT3,1006,B,ON,1

Antenna and receiver name:
$PASHS,RT3,1033,B,ON,31

System parameters:
$PASHS,RT3,1013,B,ON,1

ASCII message:
$PASHS,RT3,1029,B,ON,1

GLONASS code phase bias:
$PASHS,RT3,1230,B,ON

If you want to generate corrections for your own rovers, the standard ATOM format is recommended. As examples, set the following messages, still assuming that the output port used is B and the output rate is 1 second:

Observations and static position:
$PASHS,ATM,RNX,B,ON,1,&SCN,4

Receiver and antenna names, other attributes:
$PASHS,ATM,ATR,B,ON,1

Moving Base

Set the board through its port D as a moving base:
• Unless already done, set the board to SOLO mode:
 \$PASHS,SNS,SOL

• Enter the base ID. Example:
 \$PASHS,STI,0001

• If you want to generate corrections for your own rovers, the standard ATOM format is recommended. As examples, set the following messages, still assuming that the output port used is B and the output rate is 1 second:
 Observations and kinematic position:
 \$PASHS,ATM,RNX,B,ON,1,&SCN,204

 Receiver and antenna names, other attributes:
 \$PASHS,ATM,ATR,B,ON,1
Raw Data Recording

In SOLO Mode Raw data recording can take place using the standard RTCM3.2 or the proprietary ATOM format.
In all message examples given below, s1 designates the port ID and f2, the observation interval.

RTCM3.2:

$PASHS,RT3,1077,s1,ON,f2$
$PASHS,RT3,1087,s1,ON,f2$
$PASHS,RT3,1097,s1,ON,f2$
$PASHS,RT3,1117,s1,ON,f2$
$PASHS,RT3,1127,s1,ON,f2$
$PASHS,RT3,1006,s1,ON$
$PASHS,RT3,1033,s1,ON$
$PASHS,RT3,1013,s1,ON$
$PASHS,RT3,1029,s1,ON$
$PASHS,RT3,1230,s1,ON$

GPS ephemeris:

$PASHS,RT3,1019,s1,ON$

GLONASS ephemeris:

$PASHS,RT3,1020,s1,ON$

QZSS ephemeris:

$PASHS,RT3,1044,s1,ON$

Galileo ephemeris:

$PASHS,RT3,1045,s1,ON$

ATOM:

Full observations:

$PASHS,ATM,RNX,s1,ON,f2$

Ephemeris, almanac, iono data:

$PASHS,ATM,NAV,s1,ON$

Receiver, antenna names, etc.:

$PASHS,ATM,ATR,s1,ON$
In DUO Mode

You can record raw data separately for each sensor/antenna, using the RTCM3-2 or ATOM format, as explained in SOLO mode. Raw data may be routed on two distinct ports, one per sensor, or on the same port. In the latter case, it is more convenient to work with the ATOM format.

- Full observations from primary sensor:
 `$PASHS,ATM,RNX,s1,ON,f2`

- Full observations from secondary sensor:
 `$PASHS,2,ATM,RNX,s1,ON,f2`

- Ephemeris, almanac, iono data:
 `$PASHS,ATM,NAV,s1,ON`

- Receiver and antenna names and other attributes:
 `$PASHS,ATM,ATR,s1,ON`

Adding Startup Protection to the Board

You can set up the board in such a way that it can only be run by an authorized user. This protection is called “startup protection”.

Through this protection, you can prevent anyone from using the board until the right password is provided. When the password is entered to remove the startup protection, the board will switch from the “Lock” to the “Unlock” state.

Setting Up the Startup Protection

The implementation of the startup protection relies on the use of the following commands:

- `$PASHS,ATH,PWD`
- `$PASHS,LCK,MOD`
- `$PASHS,LCK,ON`
- `$PASHQ,LCK`

The startup protection is disabled by default. Follow the instructions below to activate the startup protection in the board:

- Define the password authorized users will need to remove the startup protection.
 `$PASHS,ATH,PWD,password`

 (This password should be passed on to all authorized users. As the administrator, you can check which password was last defined using `$PASHQ,ATH`.)

- Allow the board to be locked:
Typical Applications Explained

$PASHS, LCK, MOD, ON, password

(This step requires re-typing the same password as the one you defined with $PASHS, ATH, PWD, otherwise the command will be NAKed.)
The board will be effectively locked next time you power it up.

- While designing this feature, you may need to use the following command to read the current status of the startup protection:

 $PASHQ, LCK

 The board response will be in the form:

 $PASHR, LCK, s1, d2*cc

 For more information, see LCK: Lock Mode Status & Receiver Lock Status on page 394.

Allowing an Authorized User to Unlock the Board

When the board is only one part of the system you designed for your customer, you should make sure the system’s user interface accommodates a mechanism allowing an authorized user to enter the password.

- When a password is entered from the system’s user interface, make sure you pass on the following command to the board:

 $PASHS, LCK, OFF, password

 - If the entered password is correct, the board will return:

 $PASHR, ACK*3D

 This means the board has been unlocked successfully and the user can start using the system.

 - If the entered password is incorrect, the board will return:

 $PASHR, NAK*30

 This means the unlocking mechanism failed, keeping the board locked. From that point, you may create a new routine warning the user of unlock failure and you may also allow the user to submit a new password.
Deactivating the Startup Protection

If you want to reverse to default operation (no startup protection), do the following:

- Run this command:
 \$PASHS,LCK,MOD,OFF,password

 Note that the last password defined with \$PASHS,ATH,PWD must be entered in the command line, otherwise the command will be NAKed.
Chapter 4. Trimble RTX Correction Service

Introduction

Trimble RTX is a technology that leverages real-time data from a global tracking station network along with innovative positioning and compression algorithms to compute and relay satellite orbit, satellite clock, and other system adjustments to GNSS receivers. This breakthrough technology provides satellite or IP delivered, high-accuracy GNSS positioning without the use of a traditional reference station-based infrastructure. While standard autonomous GNSS positioning provides horizontal accuracies that are often more than 1 meter, Trimble RTX can provide horizontal accuracies of better than 4 cm (1.5 inches).

The MB-Two board supports four different Trimble RTX correction services, each of them offering a specific level of accuracy and a specific initialization time. Each of them is activated in the board through a specific firmware option:

- [C]: CenterPoint RTX (RMS accuracy < 4 cm)
- [9]: FieldPoint RTX (RMS accuracy < 20 cm)
- [P]: RangePoint RTX (RMS accuracy < 50 cm)
- [4]: ViewPoint RTX (RMS accuracy < 1 m)

Computing RTX Position in MB-Two

The MB-Two can compute a centimeter-level position solution using Trimble RTX State Space Correcting Data. Data can enter the board either through an L-band (sky) data link or through NTRIP service via one of the board’s communication ports (Internet Port).

Using the Trimble RTX correction service requires firmware option [C], [9], [P] or [4] to be installed on the board. In addition, to let the board use the L-band reception channel, firmware option [L] must be installed as well.
Trimble RTX Correction Service

Theory of operation: Below are the commands required to enable MB-Two to make use of the Trimble RTX correction service:

- Define the source of RTX corrections (L-band or IP)

 Selecting L-band:
 `$PASHS,RTX,SRC,LBN`

 Or selecting IP:
 `$PASHS,RTX,SRC,IP`

 Or automatic source selection:
 `$PASHS,RTX,SRC,AUT`

- If you want to use L-band reception:
 Tracking all RTX satellites:
 `$PASHS,LBN,USE,RTX,ON`

 Or tracking a particular satellite. Example:
 `$PASHS,LBN,USE,RTXAE,ON`

You may combine RTK solution (see Rover Computing RTK Position on page 37) and RTX solution computation. In that case, analyzing the GGA message will tell you whether the position solution is an RTX or RTK one:

- Position type: “4” for RTK or RTX fixed, “5” for RTK or RTX float
- Base station ID different in RTK and RTX

These commands are more conveniently handled using the Web Server (see section below).

Implementing Trimble RTX using the MB-Two Web Server

- Run the Web Server (for more details, see Running the Embedded Web Server on page 71).
- Open the Receiver tab, then the Position tab.
- Select the Sensors/Antennas Setup section (click on the gray scroll-down list on the left to make that selection) and define the parameters relevant to the antenna you are using.
Then select the **Rover Setup** section (still from the gray scroll-down list).

- In the **Rover Settings** sub-section, select “RTK” as the **Processing Mode**, and “Automatic” as the **Input Mode**.
- In the **RTX Settings** sub-section, select the source of RTX corrections (**Corrections Source** = L-Band, NTRIP or Automatic), the correction service used (**Engine Mode** = ON or OFF) and whether or not you need to convert the RTX computed position to another datum (**Datum Transformation** = ON or OFF). Without this transformation, the RTX position will be expressed in the ITRF2008 current epoch datum.
- In the **Other Settings** subsection, select “**PPP Position**” as the **Output Position Type**.
- Click on the **Configure** button to enter all the new parameters. MB-Two is now ready to operate with the Trimble RTX correction service.

For more information, refer to **Setting the MB-Two from the Web Server on page 71**.
Trimble RTX Accuracy Figures

NOTE 1: Accuracy and TTFF specifications may be affected by atmospheric conditions, signal multipath, satellite geometry and corrections availability and quality. Vertical error is typically less than twice the horizontal error.

NOTE 2: Performance values assume a minimum of five satellites, following the procedures recommended in the product manual. High multipath areas, high PDOP values and periods of severe atmospheric conditions may degrade performance.

<table>
<thead>
<tr>
<th>Service</th>
<th>Horizontal Accuracy (RMS)</th>
<th>Initialization Time</th>
<th>GNSS Frequencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>CenterPoint RTX</td>
<td>< 4 cm</td>
<td>< 30 min</td>
<td>L1/L2</td>
</tr>
<tr>
<td>FieldPoint RTX</td>
<td>< 20 cm</td>
<td>< 15 min</td>
<td>L1/L2</td>
</tr>
<tr>
<td>RangePoint RTX</td>
<td>< 50 cm</td>
<td><5 min</td>
<td>L1/L2</td>
</tr>
<tr>
<td>ViewPoint RTX</td>
<td>< 1 m</td>
<td><5 min</td>
<td>L1</td>
</tr>
</tbody>
</table>
Chapter 5. Setting the MB-Two from the Web Server

The embedded Web Server offers the most convenient and fastest way of looking into both the configuration and operating status of the board.

Running the Embedded Web Server

Before you can run the MB-Two Web Server from your usual browser, you need to know the IP address of the board. The way you can read this address depends on whether the DHCP mode is active or not:

- **DHCP mode active**: By default, the MB-Two board is set up to operate in DHCP mode (dynamic IP address allocation), which means the IP address will be allocated by the local network, and not by you. In that case:
 - Connect the board’s Evaluation kit to the local network through its Ethernet port, using an Internet cable between the RJ45 connector (J2 on the Evaluation kit) and the network (see [1]).
 - Make a serial connection between the board and your computer (default baud rate: 115200 Bd) (see [2]).
 - Power on the board and wait about 1 minute until the local network has assigned an IP address to the board.
 - On the computer, use AshCom (see **Using AshCom to Communicate with MB-Two on page 23**) to run the following query command:

 $PASHQ,ETH

 You will get an answer of this type (if DHCP active):

 $PASHR,ETH,<Ethernet Port>,<Ethernet Status>,<MAC Address>,<Current IP Address>,DHP=1,ADD=<Static IP address when DHCP disabled>,MSK=<Subnetwork Mask>,GTW=<Gateway IP Address>,DN1=<DNS1 IP Address>,DN2=<DNS 2 IP Address>,ACN=<(obsolete field)>*cc

 The board’s IP address is provided in fourth position in the response line. (For a complete description of the

71
$PASHQ,ETH command, see ETH: Ethernet Status and Parameters on page 361.)

– Run a web browser on your computer (see [3]).
– Type the board’s IP address in the web browser and press Enter on the keyboard. This opens the Web Server Home page (see next section).

NOTE 1: Being a dynamic IP address (DHCP mode on), you may need to read the board’s IP address. Use command $PASHQ,ETH for this purpose.

NOTE 2: The board queries the DHCP server every 60 seconds. If there is no DHCP server answering the board in the next 10 seconds, there is an attempt to allocate IP address “169.254.1.0” to the board. This address will be chosen if no address conflict is detected. Otherwise, IP address “169.254.1.1”, “169.254.1.2”, etc. will be tested successively until one is found that does not cause any IP address conflict (IP addresses tested up to “169.254.1.255”).

• Using a static IP address (DHCP mode off): You will need to disable the DHCP mode by yourself and define each and every of the required board’s network parameters, including the board IP address. In that case:
 – Connect the board’s Evaluation kit to the local network through its Ethernet port, using an Internet cable between the RJ45 connector (J2 on the Evaluation kit) and the network (see [1]).
 – Make a serial connection between the board and your computer (default baud rate: 115200 Bd) (see [2]).
 – Power on the board.
 – On the computer, use AshCom to run the set command below. This command will disable the DHCP mode (i.e. “DHP,0” in the command line below) and define the different addresses required, including the board’s IP address (in second position in the command line):

 $PASHS,ETH,PAR,DHP,0,ADD,<IP address>,MSK,<Subnetwork Mask>,GTW,<Gateway IP Address>,DN1,<DNS 1 IP Address>,DN2,<DNS 2 IP Address>

 – If the command is successful, you will get this response line:

 $PASHR,ACK*3D

 You may check your settings by running the command $PASHQ,ETH (as described above when DHCP active).
– Run a web browser on your computer ([3]).
– Type the board’s IP address in the web browser and press Enter on the keyboard. This opens the Web Server Home page (see next section).

NOTE 1: If you are not familiar with network issues, you may seek advice from your local network manager.

NOTE 2: The Ethernet port is powered on by default. If for some reason, it was turned off, use $PASHS,ETH,ON to turn it back on (see ETH,ON: Powering On the Ethernet Port on page 199).

MB-Two Not Connected to any Network

When the board is not otherwise using its Ethernet port and there is no network connection available in the operating environment of the board, you should connect your computer directly to the board using a crossover Ethernet cable ([1]). Only through this connection will you be able to use the Web Server to control the board.

In a crossover cable, the pinout is inverted at one end of the cable. The crossover cable is not provided but is widely available from computer supply stores or on line, and is usually fitted with RJ45 connectors.

In this case, make the following settings BEFORE physically connecting the computer to the board through the crossover cable:

• On the board, disable the DHCP mode and define an arbitrary static IP address and a subnetwork mask for the receiver.

• On the computer, change the network configuration for an exclusive TCP/IP connection with the board.

Before changing the network configuration of the computer, it is advisable to write down all the current settings so that you can easily reverse to the previous network configuration when you are done with communicating with the board.

Below are more detailed instructions to complete the above two steps. Use AshCom ([2]) to send commands through a board’s serial port:

1. Read the current settings of the Ethernet port. Write them all down so that later you can easily reverse to these settings.

 $PASHQ,ETH
 Example of receiver response:
Setting the MB-Two from the Web Server

$PASHR,ETH,I,ON,00:00:00:10:a0,10.20.2.123,DHP=1,ADD=192.168.
0.1,MSK=255.255.255.0,GTW=255.255.255.255,DN1=255.255.255.255,D
N2=255.255.255.255,ACN=1*53

Should the Ethernet port be off (2nd parameter in the
above response line is “OFF” instead of “ON”), use the
following command to turn it back on:

$PASHS,ETH,ON

Receiver response should be the following if the set command is successful:
$PASHR,ACK*3D

2. Disable the DHCP mode and define an arbitrary IP address
for the board:

$PASHS,ETH,PAR,DHP,0,ADD,10.20.2.10,MSK,255.255.255.0,GTW,
10.20.2.1

$PASHR,ACK*3D

Where:
“10.20.2.10” is the arbitrary IP address assigned to the
board.
“255.255.255.0” is the arbitrary, but also mandatory,
subnetwork mask.
“10.20.2.1” is the arbitrary address for the gateway that
will be assigned to the computer.

3. On the computer, change the network configuration in
order to assign a static IP address to the computer. It’s a
good practice to save or write down the parameters of the
current network configuration before changing them.
Unless already done, disable the DHCP mode and enter a
static IP address for the computer (different from that
assigned to the board, e.g. 10.20.2.2). Enter the same
subnetwork mask and gateway as those you previously
assigned to the board through the $PASHS,ETH,PAR
command.

If you have problems completing this step, you may seek
advice from your company’s network expert.

4. Connect the crossover cable ([1]) between the board and
the computer.

5. Open a web browser ([3]) on the computer.

6. Type the board IP address in the address box. This
launches the Web Server on the board.
Managing Access Rights

The Web Server administrator may implement two types of access rights to protect the Web Server from unauthorized access and use:

- **Security enabled**: Only the owner or authorized user can access the Web Server. All changes are allowed. When starting the Web Server, a login and password is required first.

 NOTE 1: The default credentials for a connection are the following:

 – Login: admin
 – Password: board serial number (from GNSS firmware v4.11)
 (CAUTION: for boards manufactured before 3.2X, the default password is “changeme”).

 NOTE 2: For boards received after January 1st, 2020, with GNSS firmware v4.11, you will have to change the default password the first time you connect to the board’s Web Server (see details in next section).

- **Anonymous access enabled**: This is an intermediate level of security in which anyone can access the Web Server, but the number of authorized actions are limited, in compliance with what the administrator has decided.

 There are four different levels of protection in this case:

 1. Read-only mode: Visitors are just allowed to view the different web pages. No changes are allowed, no files can be deleted or downloaded.
 2. Read only mode, but visitors are allowed to download files, where prompted.
 3. Read only mode, but visitors are allowed to delete files, where prompted.
 4. Read only mode, but visitors are allowed to download or delete files, where prompted.

 With this protection active, the registered users and administrator will have to go to Receiver > Security to enter their login and password, thus recovering full access to the Web Server.
Setting the MB-2x2 from the Web Server

Home Page

First-Time Login The first time you run the Web Server, you need to:

- Enter the login and default password (the default password is the board’s serial number).

 To read the serial number, click on \(\text{ } \) and then read that number in the table on the left, in the second row.

- Click on the Log In button. This opens a connection to the Web Server and you are right away requested to do the following:

 - Change the password you’ve just entered. Click on \(\text{ } \) to read all the instructions you need to know to define a valid password. As explained in that tip box, your new password should have at least medium strength to be valid. The password’s current strength is reported underneath as you type in the new password.

 - Confirm your new password by entering it a second time in the field underneath.

- Click Validate to save the new password. This opens the Web Server’s Home tab (described in the section below).

 End of first connection procedure.

Second and Next Login Procedures Access to the Web Server is restricted. If you are the owner of the board or an authorized user, enter the login and password to gain access to the Home page.

The board you are trying to connect to may also be startup-protected in which case you should also enter the required password to get through that protection (more on this in the Security on-line Help, Startup Protection section).

When protection is configured to allow anonymous access, then the Home page is opened directly when launching the Web Server, without the need for entering a login and password. The Web Server will just view the configuration of the board. You won’t be allowed to make any changes in that case. You may however be allowed to download or delete certain files if the anonymous access mode was configured to let you do so.

Still in anonymous access mode, the administrator or registered users can recover full access to the board configuration (so they can make all the changes they want), by going to Receiver > Security and entering the login and password, thus escaping from the anonymous access mode.
In its upper-left corner, the **Home** page shows a blue frame recalling the name and brand of the board you can control through the Web Server. Elsewhere on this page, you can read various information about the board (see below).

At the top of the page is a banner (a gray area), **which will stay permanently visible whatever the data displayed underneath.** From left to right, the banner shows the following:

- **If the board is startup-protected:**
 - A close padlock icon is shown before the password relevant to this protection is entered.
 - An open padlock is shown after the correct password has been entered.
- **The company logo.** Clicking on this logo will take you directly to the company's website.
- **Three menu buttons:**
 - **Home** menu: Opens the Home page, the one you see when you start the Web Server.
 - **Receiver** menu: Provides access to all the pages allowing to set and monitor the board.
 - **Support** menu: Takes you directly to the Support page on our website (in a new window).
- **The Board Status banner:** This banner can be shown or hidden by clicking on the triangle button located on the right (see below). When shown, the Board Status banner provides the following information, from left to right, and for each antenna used if two are used:
 - 1st column: Rover mode or base mode status, position type, base station ID.
 - 2nd column: Number of satellites tracked, number of satellites used, PDOP.
 - 3rd column: Ethernet status.
 - 4th column: Recording status, site name, memory used and available space.
 - 5th column: Embedded NTRIP caster status.
 - Current UTC date and time.

When the Board Status banner is hidden, this area just shows the UTC date and time (in larger, bold characters).

- **:** A button allowing you respectively to show or hide the Board Status banner.
- **:** A button providing access to the on-line help.
• ✉: A button that opens a window listing information on the board and all installed firmware options. Click on the red-cross button to close that window.
• Flag: Click on this button to choose the Web Server interface language.
• ⚠: This button appears only after the board has detected errors and set one or more alarm messages. Click on this button to read and acknowledge the alarm message(s).

As a general rule, the configuration functions are shown on the left of the screen (occupying a third of the page width) and the status/monitoring functions will be shown on the right, occupying the remaining two thirds of the page. An orange vertical line separates the two areas.

When you change some parameters in the configuration area, these will be effective only after you have clicked on the Configure button at the bottom of the page. Following this action, the status area will be updated accordingly, instantaneously or after some delay depending on the nature of the parameters you are changing.

The board identification information includes:
• Board type
• System name
• Serial number
• Ethernet MAC address
• Firmware version
• Firmware date
• More: Clicking on this link will open a table listing advanced information on the board, including those shown on the home page. The table is the same one you get by typing on the exclamation mark in the top banner.
• In the lower part of the Home page, you can read the list of installed firmware options.
The **Receiver** menu provides access to nine tabs:
1. Position
2. I/Os
3. Radio
4. Network
5. Satellites
6. Memory
7. Configuration
8. Security
9. Embedded NTRIP Caster

Each tab provides access to two categories of functions:
- The configure functions
- The status functions

The configure functions are accessible from the tab located on the left, and status functions from the tab located on the right. Each of these functions is detailed below.

Position
You may either configure the board as a rover, as a base, or as a device computing attitude/heading measurements. You only need to complete the tab corresponding to the function you are interested in. You are however required to complete the **Antennas Setup** tab in all cases.
Sensors/Antennas Setup

• **Multiple-Sensor Mode**: Specify the number of independent sensors used in the board (one or two):
 - **Single Antenna (automatic)**: One sensor (one GNSS antenna input used). The detected antenna is used. If two antennas are detected, the primary antenna is used.
 - **Single Antenna (primary)**: One sensor. The primary antenna (J1 input) is used.
 - **Single Antenna (secondary)**: One sensor. The secondary antenna (J2 input) is used.
 - **Two Antennas (L1/L2/L-Band + L1)**: Two sensors are used. The primary antenna may be up to L1/L2/L-Band and the secondary antenna may be just L1.
 - **Two Antennas (L1/L2 + L1/L2)**: Two sensors are used. Both the primary and secondary antennas may be up to L1/ L2.

• **Reference Position**: Tell the board for which point on the antenna the position will be calculated:
 - **L1 Phase Center**
 - **Antenna Reference Point (ARP)**
 - **Ground Mark (GM)**

 This selection will also apply to the second antenna, if any.

• For each antenna used (primary and secondary), specify the following parameters:
 - **Manufacturer**: Select the brand of GNSS antenna used. Choose “UNKNOWN” if the model used is unknown or not listed.
 - **Antenna Name**: Once you have selected the antenna manufacturer, use this drop-down list to select the model of antenna used.
 - **RINEX Name**: When you select an antenna model, this drop-down list field is automatically updated to select the equivalent RINEX name for this antenna model. For some antenna models, more than one RINEX name is possible so you should choose the one you want to use. If you chose UNKNOWN for the antenna, the field is made empty so you may freely type in a RINEX name for this antenna.
 - **Method**: Choose the point on the antenna used to make the height measurement. Depending on the selected antenna model, you may have to choose between
Bottom of antenna mount, Bottom of edge, Line at edge of antenna (vertical measurement), Top of notch, (slant measurement), etc.

- **Height**: Enter the height measurement, in meters, between the ground mark and the point on the antenna corresponding to the selected measurement method. This measurement is used to provide the correct vertical component of the computed position when Reference Position= Ground Mark (GM).

- **Antenna Name** (of virtual antenna): Choose “OFF” if you don’t want to define a virtual antenna, otherwise choose the type of virtual antenna you wish to emulate (ADVNULLANTENNA or GPPNULLLANTENNA). Only the primary antenna can be defined as a virtual antenna. For more information on virtual antennas, see “Virtual Antenna” Concept on page 513.

When you are done, click on **Configure** to save all your changes and make their use effective in the board.

Rover Setup

Use this menu to set up the board as a rover.

RTK Settings:

- **Processing Mode**: Select the type of output the board must deliver:
 - **OFF**: Position computed by the receiver alone (no corrections used, metric accuracy) or using S-DGPS (submetric).
 - **RTK**: Position computed with centimeter-level accuracy using the corrections received.
 - **Hot Standby RTK**: Same as RTK above, but a second position, and possibly a third position, will be computed in the background, also with centimeter-level accuracy, each process using a different set of corrections. Only the best of the two or three computed positions will be made available at the output.
 - **RTK + Relative RTK**: The board will deliver both a centimeter-accurate position for the rover and a centimeter-accurate vector connecting an external moving base to the rover.
 - **Hot Standby RTK + Relative RTK**: The board will deliver the best centimeter-accurate position out of the two computed, and a centimeter-accurate vector connecting an external moving base to the rover.
- **Only Relative RTK**: The board will deliver a centimeter-accurate vector connecting the antenna of an external moving base to its single antenna, or connecting the board’s secondary antenna to the board’s primary antenna (two antennas are used here, i.e. "internal" relative RTK).

- **Dual RTK** (two antennas used): The board will deliver an RTK position for each of the antennas used.

- **Dual Relative RTK** (two antennas used): The board will deliver two independent, centimeter-accurate vectors connecting an external moving base to the two antennas used by the rover.

- **Input Mode**: Choose which ports will forward incoming differential corrections to the board’s core.
 - **Automatic**: The board will recognize automatically what the corrections are, and which port or ports they come from.
 - **Manual**: Specify the port (in RTK and Only Relative RTK) or ports (all other processing modes) through which corrections enter the board. For each set of corrections, when applicable, you may choose a specific port, or you may let the board find by itself by selecting "Auto".

If the board is used with two antennas and is configured to operate in “internal” Relative RTK, then an additional option is available for use in the Manual field. This option is named “Internal” and when selected, allows you to route the internal corrections message from the board’s “base” sensor to the board’s “rover” sensor.

- **PPP Settings**:
 - **Enable or disable (OFF)** the use of PPP. The PPP service that you can possibly use is the following:
 - **Trimble RTX**: Corrections can be received via either L-Band or NTRIP and you can also choose which RTX satellite the receiver should work with specifically. Using Trimble RTX is possible only if one (or more) RTX option has been installed in the receiver.

 - **Corrections Source**: Choose the transmission channel that will be delivering RTX corrections to the board:
 - **Automatic**: The board will use RTX corrections received through whatever transmission channel is currently active.
– **L-Band**: The board will use RTX corrections received from satellites.
– **NTRIP**: The board will use RTX corrections delivered by a service provider over the Internet.
– **OFF**: No RTX corrections will be used.

SV Name: (Visible only if you have ticked the Trimble RTX box and Corrections Source is either Automatic or L-Band). Specify the name of the satellite (i.e. RTX...) from which to receive RTX corrections. By choosing Automatic, you will let the receiver decide which satellite to use.

Datum Transformation (ON or OFF): If you choose “ON”, please indicate the names of the datum and tectonic plate in which to express the coordinates of the computed position. If you don’t know which datum and/or tectonic plate you are on, choose Automatic. If you choose “OFF” the computed position will be expressed in the ITRF2014 current epoch datum.

Other Settings:

Primary GNSS System: Choose a primary GNSS system (GPS, GLONASS, BeiDou or Galileo). This parameter impacts the choice of datum in which the position computed by the board will be expressed.

Output Position Type: This choice impacts the level of accuracy you allow the board to deliver:
– **RTK Position**: Centimeter level
– **PPP Position**: Centimeter level after convergence time (Trimble RTX)
– **(RTCM) Differential Position**: Decimeter level
– **SBAS Differential Position**: Decimeter level
– **Standalone Position**: Meter level

Rover Dynamics: Choose the dynamic model that best suits the board you are setting (walking, ship, aircraft, etc.), depending on the application in which it is used. Choosing “Adaptive” means you allow the board to adapt itself to its own dynamics.

If you choose **User-defined**, please enter your values for the following parameters: *Max. horizontal velocity* (in m/s), *Max. horizontal acceleration* (in m/s²), *Max. vertical velocity* (in m/s), *Max. vertical acceleration* (in m/s²).

When you are done, click on **Configure** to save all your changes and make their use effective in the board.
Base Setup
Use this menu to set up the board as a base and define the reference position.

Virtual Antenna:
- Antenna Name: Choose “OFF” if you don’t want to define a virtual antenna for the base antenna, otherwise choose the type of virtual antenna you wish to emulate.

(Primary + Secondary) Sensor Settings:
If two antennas are used, the Web Server may let you define two bases (one in Primary Sensor Settings and the other in Secondary Sensor Settings).
If one antenna is used, only one base may be defined.
To define a base, enter the following set of parameters:
- Station ID: Enter an identification number for the base.
- Position Type: Choose between Static and Moving.
 - Latitude, Longitude, Height, Height Reference: If the base you are configuring is a static one, enter the coordinates of the base location (thus defining the reference position). These should be expressed in the datum of the primary GNSS system currently used. Use the Height Reference field to specify which location on the antenna the entered coordinates refer to (L1 phase center, ARP or ground mark).
 - Clicking on the Get Current Position button allows you to save the last position computed by the receiver as the reference position. The three above fields are then completed with these last computed coordinates.
 - Clicking on the Import Position button allows you to import a file containing base coordinates. The file should be a text file with the “csv” extension in which the comma is used as field separator. In the csv file, the coordinates should have been formatted this way: “P,Lat,Lon,h,Code” where:
 - P: Point name
 - Lat: WGS84 latitude (signed value, in degrees, with decimal places)
 - Lon: WGS84 longitude (signed value, in degrees, with decimal places)
 - Code: When importing the file, the content of this field will be ignored but remember this field needs to be present in the csv file (just insert a comma after the longitude).
Example: CARQ,47.29897,-1.50905,88.093,
After importing the csv file, the imported coordinates will appear in a table. Select the corresponding row in the table to assign this position to the sensor. Be aware imported coordinates are always seen as those of a ground mark (Height Reference field automatically set to Ground Mark (GM)) but you can always correct this field so it accurately describes what the imported coordinates really are.

It does not make sense to enter coordinates if the base you are configuring is a moving one.

Other Settings
- **Primary GNSS System**: Choose a primary GNSS System (GPS, GLONASS, BeiDou or Galileo). This parameter impacts the choice of datum in which the position computed by the receiver will be expressed.

When you are done, click on **Configure** to save all your changes and make their use effective in the board.

Attitude/Heading Setup

NOTICE: For attitude computation, you not only need to configure the MB-Two delivering attitude measurements, but also the external sensors involved in the process. These sensors should be configured separately.

- **Mode**: Choose whether you want the board to perform heading computation, attitude computation, or none of the two (Off).

 If you chose to use two antennas (see **Multiple-Sensor Mode** field), then this field is preset to “Heading”. If you chose to use only one, then it’s set to “OFF”.

- **Input** (if **Mode** other than **OFF**): Designates the source of corrections used to determine heading or attitude.

 If **Heading** is selected:
 - Select “Internal” to let the board compute heading on its own, that is, moving base data are generated for the primary antenna and processed together with rover data coming from the secondary antenna.
 - Select “External” if moving base data are provided by another board (MB-Two using one antenna) connected to this board through one of its communication ports. (Option [E] is required on the board delivering external heading measurements.)

 Then indicate the port on which the external data are applied to the board.
And if these data are coming from another MB-Two board configured with two antennas, indicate the antenna for which the corrections are computed (Primary Antenna or Secondary Antenna).

If Attitude is selected: Same as heading, plus you are allowed to add a correction stream using the button.

- **Vector Description:**
 In heading mode, you have first to indicate the nature of the vector, using the **Length Type** field. If the vector length is liable to vary over time, even in small proportions, choose “Changing (Flex)” and so there is no possibility for you to ask for auto-calibration in this case (as this would make no sense). Conversely, if the vector results from a setup making it strictly constant in length over time, choose “Fixed” and then decide on whether auto-calibration should be run or not (see below).

In attitude, just make a choice for auto-calibration and if appropriate, enter the vector lengths (see below).

- **Auto Calibration:** This setting is always available in attitude and heading modes, only if **Length Type** = “Fixed”. When enabling this function, you ask the board to determine the length of the vector(s) by itself, through auto-calibration. If you disable this function, you have to provide this or these lengths. See below.

- **Vector Length:** This setting is available only if Auto Calibration has been cleared. In heading mode, enter the known length of the vector. In attitude mode, enter the known length of each of the two vectors (First Vector Length, Second Vector Length).

- **Settings:**
 You need to enter two offsets in heading mode, three in attitude mode.

 Heading:
 - **Azimuth Offset:** Enter the azimuth offset angle, in degrees (possible range: ±180°; default: 0°). See Heading-Roll-Pitch Offsets on page 29 for more information.
 - **Elevation Offset:** Enter the elevation offset angle, in degrees (possible range: ±90°; default: 0°). See Heading-Roll-Pitch Offsets on page 29 for more information.

 Attitude:
– **Heading Offset**: Enter the heading offset angle, in degrees (possible range: ±180°; default: 0°). See *Heading-Roll-Pitch Offsets on page 29* for more information.

– **Pitch Offset**: Enter the pitch offset angle, in degrees (possible range: ±90°; default: 0°). See *Heading-Roll-Pitch Offsets on page 29* for more information.

– **Roll Offset**: Enter the roll offset angle, in degrees (possible range: ±90°; default: 0°). See *Heading-Roll-Pitch Offsets on page 29* for more information.

• **Max. Baseline Elevation**: Enter the maximum foreseeable baseline elevation angle, due to vehicle swaying, between the end of calibration and the time when valid heading/attitude data are delivered. A value expressed in degrees (permitted range: 0-45°).

The greater the elevation, the longer the time required for the board to deliver valid heading/attitude data after the calibration phase is complete.

So if you want to reduce this wait time, make sure the swaying of the vehicle will be kept at a minimum between the end of calibration and the effective delivery of valid heading/attitude data, and define this parameter accordingly, i.e. as low as possible (default value: 15°).

When testing this value, the board will take into account the entered value of elevation offset as well.

• **Baseline Tolerance**: Enter the tolerated variations of the baseline length around its nominal value, in meters (default: 0.02 m; Range 0 to 1.0 m).

When you are done, click on **Configure** to save all your changes and make their use effective in the board.

Activity

This tab shows the operation status of the board in real time:

• The list of satellites currently tracked by the primary antenna. Satellite numbers are sorted by GNSS constellation.

• The status of the secondary antenna and the list of satellites currently tracked by this antenna. Satellite numbers are sorted by GNSS constellation.

• The list of input and output messages (port, type, rate, etc.).

• The memory status and data recording status.

• Die temperature.
Setting the MB-Two from the Web Server

- The time elapsed since the board was last turned on (Runtime).

<table>
<thead>
<tr>
<th>Activity</th>
<th>Satellites Tracked for Primary Antenna: 25</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GPS (3) 2, 5, 6, 7, 9, 13, 16, 18, 20, 21, 23, 24, 25, 27, 28, 29, 30</td>
</tr>
<tr>
<td></td>
<td>GLONASS (15) 1, 2, 3, 11, 12, 17, 18, 19</td>
</tr>
<tr>
<td></td>
<td>Galileo (4) 1, 5, 5, 52</td>
</tr>
<tr>
<td></td>
<td>BeiDou (3) 26</td>
</tr>
<tr>
<td></td>
<td>SAC (2) 100, 125, 136</td>
</tr>
<tr>
<td></td>
<td>L-Band (1) RTXNC</td>
</tr>
</tbody>
</table>

Primary Antenna Status: Antenna cable is shorted
Secondary Antenna Status: Antenna cable is shorted

- Memory
 - Internal Memory [MB] 0
 - Recording
 - Record in progress on external memory [GB]: 0

Temperature: 59°C
Runtime: 11:02:39

Trimble RTX Status
- L-Band option (installed, or blank for not installed)
- Name of RTX option installed, if any
- Corrections Source (Automatic,...)
- Engine Mode (CenterPoint, FieldPoint, RangePoint or ViewPoint, depending on the RTX option installed)
- Datum Transformation (OFF, ON)
- Datum Name
- Plate Name
- SVs for tracking
- Antenna (primary, secondary or OFF)
- Antenna Status (Connected, not connected, shorted or unknown)
- Satellites Tracked
- Satellite Used
- Elevation [Deg.]
- Azimuth [Deg.]
- C/No [dBHz]
- Cumulative Tracking Time [Sec.]
- Trimble RTX position
- Trimble RTX Source ID
- Age of Corrections [Sec.]
Setting the MB-Two from the Web Server

See example below.

Position

This tab displays the following information:

- Time information (GPS time, inter-constellation offsets)
- Clock information
- Current coordinates of primary antenna position, type of position solution, precise point on antenna for which position is computed, satellites used to compute the position.
- If two antennas are used, current coordinates of secondary antenna position, type of position solution, satellites used to compute the position.

Still with two antennas used, using the secondary tab (All Antennas/Primary Antenna/Secondary Antenna), you may view additional information about the position solution of each antenna (age and type of corrections, velocity, PDOP, error estimates, etc.).
Setting the MB-Two from the Web Server

This information is shown by default for the primary antenna when only this antenna is connected to the board.

Position (Graph)

This tab allows you to visualize any of the following parameters, all relevant to the position solution computed for the primary or secondary antenna:

- **Height**: Height coordinate vs. time
- **East**: East coordinate vs. time
- **North**: North coordinate vs. time
- **East/North**: East/North coordinates (“position cloud” diagram)
- **Horizontal**: Horizontal deviation of computed position compared to a reference (or first computed) position, vs. time
- **PDOP/#SVs**: PDOP value and number of satellites received vs. time
- **Age of corrections**: Age of corrections, in seconds, vs. time

Each of these parameters is shown as a function of time (except for **East/North**: see above). The time axis is defined as follows:
• If you choose “High-Rate Positions”, the visualized parameter being a raw, non-smoothed one (with 10-Hz update rate), the X axis represents the last 15 minutes of operation elapsed.
• If you choose “10-Second Positions”, the visualized parameter being smoothed over 10 seconds, the X axis represents the last 24 hours of operation elapsed.

NOTE: For this particular viewing function, the Web Server may ask you to install/activate Adobe Flash Player if not installed yet on your computer, and/or to activate it if the web browser you are using currently blocks the use of this application.

Vectors
This tab displays the following information:
• The results of the heading/attitude computation (solution status, heading angle, pitch angle, roll angle).
• The three components of each vector involved, its modulus (length), orientation and direction.
• The base ID attached to the origin of each vector.
• The three components of error estimates (in meters) for each vector.

Attitude Display
Depending on whether option [E] (Attitude) is missing or installed, this tab will be labeled respectively Heading Display or Attitude Display.
The tab provides a graphic representation of the heading, roll and pitch, as currently computed by the board:
• The compass shows the heading angle, the horizontal bar graph located underneath shows the roll angle and the vertical bar graph on the left shows the pitch angle.
When heading, not attitude, is computed, the horizontal bar graph is not used. In this case, the vertical bar graph shows either the pitch or roll angle, depending on the orientation of the antennas on the vehicle.
• When no heading or attitude is computed, a large red cross is shown over the compass. The compass reading is static at 0°. The “Heading not available” status message appears in red.

• In Calibration mode, as long as measurement ambiguities are not solved, you can see a large red cross over a changing compass reading. The “Under Calibration (Float Solution)” status message appears in red.

 After measurement ambiguities are solved, you can see a large cross (this time orange in color), over a changing compass reading. The “Under Calibration (Fixed Solution)” status message appears in red.

• After calibration is complete and a valid value of heading is computed, the compass shows the heading angle and the heading status is either “Solution Available (Float solution)”, in orange characters, or “Solution Available (Fixed solution)”, in green characters.
I/Os

Input Setup & Output Messages

This function allows you to program all kinds of NMEA, NMEA 2000, ATOM, CMR, RTCM or GSOF messages on the board’s different communication ports. The complete list of programmed messages can be seen at all times on the I/O Status pane on the right.

When you are done, don’t forget to click on the Configure Setup button to save your input setup. Likewise, don’t forget to click on the Configure Output button to save all your output messages.

List of Available Ports. The following ports can be used to output data:

- **Serial** (three ports: A, B and D)
- **USB serial** (one port)
- **TCP/UDP xxxx** (two IP ports): Each of these ports is named after the protocol and IP port number you will have selected for it (e.g. “TCP 8886” will designate an IP port that uses the TCP protocol and has the number “8886”).

 Warning: These two ports will accept $PASH or DCOL commands only after the default password giving access to the Web Server has been changed. None of these commands will otherwise be accepted on these ports.
- **NTRIP/DirectIP x** (two IP ports): Each of these IP ports may be used in two different ways: for a Direct IP connection, or for an NTRIP connection.
The NTRIP connection type includes two special cases of use, which are IP connection to a Trimble RTX service and IP connection to the receiver’s embedded NTRIP Caster.

- **Memory:** One port through which data can be routed to the selected memory, to be stored as a G-file recorded manually (i.e. out of any sessions).

- **CAN Bus** (one port).

List of Available Data Messages. Different message formats exist. For each of these formats, the lists of available message types are provided below:

- **ATOM:**
 - RNX (GNSS raw measurements)
 - PVT (Positioning results)
 - ATR (Receiver attributes)
 - NAV (GNSS navigation data)
 - DAT (Raw GNSS data)
 - ANG (Attitude)
 - LIN (Baseline)
 - VEC (Vectors)
 - OCC (Site occupation information)
 - PTT (PPS time tag)
 - TTT (External event time tag)

 (The nature of the data in each of these messages - as recalled above between brackets - is shown in a tip box if you keep the mouse pointer on a message name after opening the drop-down list attached to the **Type** field).

NOTE 1: RNX messages may be formatted in different ways. You will choose the format that describes best the way your board is used, and in line with the specific requirements of your application:
 - Static Base (RNX 4)
 - Static Base, Compact Format (RNX 100)
 - Static Base, Super Compact Format (RNX 101)
 - Moving Base (RNX 204)
 - Raw Data (PP) (RNX 0)

NOTE 2: When recording ATOM messages in memory (saved as a G-file), you may choose different “packages” of ATOM messages, as described below:
 - **Standard:** ATR + NAV + RNX-0 (<Selected rate>) + OCC
Setting the MB-Two from the Web Server

- **Extended**: PVT (<Selected rate>) + ATR + NAV + DAT + RNX-0 (<Selected rate>) + STA (<Selected rate>) + ANG (<Selected rate>) + OCC
- **Customized**: You choose by yourself which of the messages (ATOM or other) you would like to record in memory.

NOTE 3: Some ATOM messages require an output rate, some others don’t.

- **RTCM**: RTCM messages are available in three different versions: 2.3, 3.0/3.1 and 3.2.
 After you have selected an RTCM version, you will be able to build directly the standard content of your RTCM messages by clicking on the **Apply in table below** button.
 Below are the preset lists of message types for the three RTCM versions (but remember you will always be allowed to customize these lists once loaded in the table):
 - RTCM 2.3: Message types 1, 3, 31 and 32. The delivered data are assumed to be those from a DGNSS base.
 - RTCM 3.0/3.1: Message types 1006, 1033, 1004 and 1012.
 - RTCM 3.2:
 - Message types 1006, 1033, 1071, 1081, 1091, 1101, 1111, 1121 and 1230 (board operating as a DGNSS base).
 - Message types 1006 (every 7 sec), 1033, 1074, 1084, 1094, 1104, 1114, 1124 and 1230 (board operating as a Static RTK base).
 - Message types 1006 (at 1 Hz), 1033, 1074, 1084, 1094, 1104, 1114, 1124 and 1230 (board operating as a Moving RTK base).
 - Message types 1006, 1033, 1077, 1087, 1097, 1107, 1117, 1127, 1230, 1013, 1019, 1020, 1042, 1044 and 1046 (board operating as a raw data collector for post-processing).
 The complete list of available RTCM message types is the following: 1, 3, 9, 16, 18-24, 31, 32, 34, 36, 1001-1013, 1019, 1020, 1029, 1033, 1042, 1044, 1045, 1046, 1071, 1081, 1091, 1101, 1111, 1121, 1074, 1084, 1094, 1104, 1114, 1124, 1077, 1087, 1097, 1107, 1117, 1127, 1230.

- **CMR/CMR+/CMRx**

- **NMEA**: The following messages are available:
Setting the MB-Two from the Web Server

- ALR, ARA, ARR, ATT, AVR
- BTS
- CAP, CPA, CPO
- DDM, DDS, DTM
- GBS, GGA, GGK, GGKX, GLL, GMP, GNS, GRS, GSA, GST, GSV
- HDT, HPR
- LTN
- MDM
- POS, PSP, PTT, PWR
- RCA, RCS, RMCF, ROT, RSP
- SBD, GSA, SGO, SGL, SGP, SIR, SLB, SQZ, SSB
- TEM, TTS, TTT
- VCR, VCT, VEL, VTG
- ZDA

- **NMEA 2000** (on CAN bus only):
 - System Time
 - Position, Rapid Update
 - COG and SOG, Rapid Update
 - Position Delta, High Precision Rapid Update
 - Altitude Delta, High Precision Rapid Update
 - GNSS Position Data
 - GNSS Satellites in View
 - GNSS Pseudorange Noise Statistics

- **GSOF** (except on CAN bus):
 - Position Time
 - Lat, Long, Ht
 - ECEF Position
 - Velocity
 - PDOP Info
 - Position VCV
 - Position Sigma
 - Attitude Info
 - Brief All SV Info
 - Position Type Info

Port Configuration. Before defining the message to be output on a port, do the following to configure the port:

- Serial ports **A**, **B** and **D**: Just choose an output baud rate.
• **USB serial** port: No additional setting required for this port.

• **TCP/UDP xxxx** (two ports): These ports allow the board to establish unidirectional or bidirectional communication with another device.

 When one of these ports is used as an input (e.g. the board is a rover acquiring corrections through this port), you just have to configure the port (no programmed message is needed on the port).

 When one of these ports is used as an output (e.g. the board is a base delivering corrections through this port), you need to configure the port and configure a message on the port.

 Whether you are using the TCP or UDP protocol, you need to define an identification number (**IP Port** field; 100 to 65535) for each port.

 If you choose **TCP**, you also need to choose one of these options:

 - **Disable**: Use this option when you want to keep the port idle or you wish to end the connection that has been active so far on this port.

 - **Input/output with authentication**: The port may be used as an input or output. In either case, the port will accept to communicate with another device if in the stream of exchanged data, the required login and password are provided and recognized. A **Show Login/Password** button appears in this case so you can access this information to read it (or change it). Note that this option cannot be activated if you leave the **Password** field empty. The port can be used to establish communication with only one device.

 - **Input/output without authentication**: The port may be used as an input or output. No login and password are required to initiate the communication between the board and the other device. The port can be used to establish communication with only one device too.

 - **Output only/Allow multiple connections**: The port is only an output. This time, several connections can be established at the same time through this port between the board and one or more devices.

 If you choose **UDP**, you also need to choose one of these options:
Setting the MB-Two from the Web Server

- **Disable**: Use this option when you want to keep the port idle or you wish to end the connection that has been active so far on this port.
- **Broadcast transmit (output only)**: The port is used as an output only. Messages will be broadcast to any devices on the same local network. Messages will be broadcast to IP address 255.255.255.255.
- **Broadcast receive (input only)**: The port is used as an input only. Messages will be received from another device on the same local network, also using the UDP protocol.
- **Transmit to remote IP address (output only)**: The port is used as an output only. Messages will be broadcast to a remote device on the same or on a different local network, whose IP address and IP port need to be specified in the field underneath (**Remote IP** field).
- **Receive from remote IP address (input only)**: The port is used as an input only. Messages will be received from a remote device on the same or on a different local network, also using the UDP protocol. The IP address and IP port of this remote device need to be specified in the field underneath (**Remote IP** field).

- **NTRIP/DirectIPx (two ports)**: Each of these two ports allows you to input or output data through an NTRIP or Direct IP connection. Special cases of NTRIP connections include Trimble RTX and Embedded NTRIP Caster.
 - **NTRIP, general case**: Choose **Connection Type** = **NTRIP**. You then need to define the following parameters:
 - **Automatic Connection at Startup**: The NTRIP connection will be restored automatically at receiver power-up if this option is activated.
 - **Mode**: Choose whether the receiver will operate as a server or a client seen from this port. If you choose **Server**, the receiver will be a base providing correction messages. If you choose **Client**, the receiver will be a rover expected to receive correction messages through the port. Additionally, you should indicate the version of the NTRIP protocol used (**V2** or other).
 - **IP Address** (or **URL**) and **IP port**: IP identification of the caster where to connect to.
 - **Login** and **Password** (characters hidden or in plain): For a server, only a password needs to be entered (as
provided by the caster owner). For a client, both a login and password are required (as provided by the NTRIP service), thus giving the client an authorization to use the service.

- **Mount Point**: For a server, enter the name of the mount point for which the server is allowed to deliver its corrections.

 For a client, use the **Load** button nearby to interrogate the server so you can choose the mount point you wish the port to connect to.

- **Send NMEA**: For a client only, choose whether the receiver’s current location should be sent to the server before the latter can deliver corrections. For this option, the choice is usually dictated by the requirements inherent in the chosen mount point.

NTRIP, special case #1: Choose **Connection Type** = *Trimble RTX*. Define the same parameters as in the NTRIP general case (above), except that the IP address to be used is firmware-set so the receiver can successfully communicate with Trimble RTX services. The drop-down list attached to the **Mount Point** field provides the list of mount points made available by the Trimble RTX services. Choose one.

NTRIP, special case #2: Choose **Connection Type** = *Embedded NTRIP Caster*. Define the same parameters as in the NTRIP general case (above), except that the IP address, IP port and password to be used are all firmware-set. The drop-down list attached to the **Mount Point** field provides the list of mount points you created for the Embedded NTRIP Caster (mount point name= `<Name>` (<Identifer>). Choose the one you want your corrections messages to be sent to.

DirectIP. Choose **Connection Type** = *DirectIP*. You then need to define the following parameters:

- **Automatic Connection at Startup**: The DirectIP connection will be restored automatically at receiver power-up if this option is activated.

- **IP Address** (or URL) and **IP port**: IP address and IP port of the remote device where the port should connect to in DirectIP mode.

- **Login** and **Password**: Login and password allowing the port to connect to this device in DirectIP mode (this information is provided by the device owner).
• **Memory**: Choose the memory in which to record the output messages (Internal Memory or USB device). As explained earlier, only ATOM messages may be sent to memory. Choose the pack of ATOM messages you want to record (see above, ATOM messages).

• **CAN Bus**: Enable the use of the bus and choose a baud rate.

Message Configuration. After you have set the port through which your message will flow, do the following to define the content of the message:

• Select a data format (ATOM, RTCM, CMR/CMR+, NMEA, GSO, NMEA 2000).

• Select a message type (**Type** field) and define additional parameters, if any requested (see all message specifics in the above sections of this Help file). For almost all message types, when two antennas are used, you also need to specify the GNSS antenna for which the message type will be generated (most of them may be generated for both antennas).

• Click on the **Add/Modify** button. The selected message type is inserted as a new row into the table shown underneath.

• Repeat the previous two steps until all the message types making up the content of your message are listed in the table.

• Click **Configure** to save the definition of your message and of the port through which the message will be routed.

NOTE 1: For any of the message types in the table, you can click directly on the corresponding row to edit (Use **Add/Modify** button) or delete (Use **Delete** button) the message type. All message types listed in the table may be deleted in one operation using the **Clear All** button.

NOTE 2: As already explained, preset lists of message types exist for some of the available formats (ATOM and RTCM). Be aware however that you can always customize these lists by adding or remove message types.

NOTE 3: The **Suspend** button can be used to suspend the generation of the message selected in the I/O Status pane (on the right). The button is then changed to **Resume** so you can ask for the reverse operation.

Troubleshooting Log (ATL)

This function allows you to generate debug ATL data. ATL data may either be recorded as a file, or sent out via a communication port.
• **State**: Use this field to start or stop ATL data generation. Select **OFF** to stop generating ATL data. Select **Recording** to start generating and writing ATL data to a file. The file is saved either on the internal or an external memory (USB key for example). When you select this option, two additional parameters need to be defined (**Maximum Duration** and **Record ATL automatically at startup**; see below)

Select **Output** to start generating and delivering ATL data via the port you specify in the field that appears next to this one. Possible choices are serial port A, B or D, USB serial or one of the two TCP ports.

• **Rate**: Choose the output rate at which ATL data will be generated.

• **Maximum Duration** (only if **Recording** has been selected): Choose the duration of ATL recording, in minutes or hours.

• **Record ATL automatically at startup** (only if **Recording** has been selected): Enable or disable this option.

Event Marker/PPS Settings

This tab first allows you to define the active transition (**Edge**) of the signal applied to the event marker input. The active edge may be one of the following: **Rising** or **Falling**.

You can also set up the One-PPS output by defining its period (**Period**= from 1 minute to 100 Hz), its offset (**Offset** is a positive or negative time value expressed in milliseconds) and its active edge (**Rising** or **Falling**). Set **Period**= **OFF** if you don’t want the board to deliver its 1-PPS signal.

Programmable PIN settings

This function allows you to program the two Multi-Function Outputs MFO1 (pin 10) and MFO2 (pin 11) on the board’s 26-contact output connector.

Each of the two outputs can independently be configured to provide the following signals:

• **Disabled**: Permanently low level signal (“0”)

• **Position available**: Signal is high (“1”) when position is available (otherwise “0”)

• **Radar simulated pulse**

• **Ashtech LED signal output**: The output is configured to drive a LED indicating the GNSS status the Ashtech way.

• **Trimble LED signal output**: The output is configured to drive a LED indicating the GNSS status the Trimble way.
Setting the MB-Two from the Web Server

- **General Purpose Output**: Choose the active level for this output. This can be a logic “1” or logic “0”.

Configure each of the two outputs to the desired function and then click **Configure** to save your changes.

Summary

This tab is the I/O status pane (located on the right), which gives an overview of all the programmed messages. Each table row provides the definition of one message (port used, message content). The columns are labeled as follows:

- **Type**: Port type.
- **Port**: Serial port name, IP address and/or IP port.
- **Name**: Port ID.
- **Input**: For an input message, indicates the type of message, otherwise blank (the message is an output message).
- **Output, primary antenna**: For an output message, indicates the content of the message generated for the primary antenna, otherwise blank (the message is an input message).
- **Output, secondary antenna**: For an output message, indicates the content of the message generated for the secondary antenna, otherwise blank (the message is an input message).

Different row colors are used in this table:

- Green: Connection successful - message flowing normally.
- Red: Connection problem - no message flow.
- White/Blue-gray succession from one row to the next: No particular meaning (normal table formatting).

If you click on a row, and provided the **Input Setup and Output Messages** tab is displayed on the left, this will open the definition of the corresponding message in this tab so you can quickly check or modify the message definition.

Radio

This tab allows you to choose the port and radio model used, download and modify the currently used radio settings.

1) For any radio model used other than XDL (vers.2.04 or higher) or an ADL (vers. 5.02 or higher), you need to define the following parameters:

- **Port and Baud Rate**: Serial port (A, B or D) to which the external radio is connected and baud rate used.
• **Type**: Model of radio used: PDL HPB/LPB, ADL Vantage/Pro/35, XDL Rover 2 or none.

• **Load Radio Settings** button: Click on this button to read the current radio settings. This will work only if the radio is connected to the receiver as specified above and the radio has been powered up.

 Radio settings are first as reported after clicking on the **Load Radio Settings** button. Then you can change these settings and upload them to the radio using the **Configure** button.

• **Channel**: Select the desired channel/frequency.

• **Channel Spacing**: Read-only field.

• **Protocol**: Select the protocol that suits the selected radio model.

• **Airlink Speed** (between 4800 and 19200 Bd) and **Modulation**.

• **Sensitivity**: Select the desired reception sensitivity (Low, Medium, High)

• **Transmit Power**: When applicable, choose the power you want the radio to radiate.

• **Forward Error Correction (FEC) and Scrambler**: Functions specific to Pacific Crest radio for safer radio transmission. Enable or disable these functions. See manufacturer documentation for more information.

• **Repeater Mode**: Enable this function if you want to board to forward the corrections it receives to the radio.

Remember most settings (i.e. channel, protocol, airlink speed, modulation, FEC, scrambler) must be consistent to allow two radios to work together.

2) If the external radio used is an XDL (vers.2.04 or higher) or an ADL (vers. 5.02 or higher), you need to define the following parameters:

• **Mode**: When this option is set to **Automatic**, the radio will be powered on automatically when you power on the receiver. If it’s set to **Manual**, the radio will be powered on or off only by setting the previous field accordingly.

• **Channel**: Choose the carrier frequency to use from the list of available frequencies.

• **Channel Spacing**: A read-only field showing the channeling (12.5 kHz) for the type of radio used.

• **Radio Mode**: Choose the set of parameters defining the operating mode you want the internal radio to work in (up
to 19 different ones). Each set of parameters includes such data as protocol and airlink speed used as well as scrambling and FEC settings.

- **Sensitivity**: Select the desired reception sensitivity (Low, Medium, High).
- **Transmit Power**: Choose the radiated power (500 mW or 2 W) for when the radio is used as a transmitter.
- **Repeater Mode**: If you enable this function in the receiver, and you are using a Trimble protocol (TRIMTALK) as radio mode, you must indicate which specific function the receiver has to fulfill (complete the Repeater Type field): “Base with 1 Repeater”, “Base with 2 Repeaters”, “Repeater One” or “Repeater Two”. If you are using another protocol (EOT, FST, etc.), enter the delay, in milliseconds, you want to introduce between the moment of reception and the moment of retransmission.

Status Pane
The pane provides a summary of the current radio settings.

Network

Ethernet
- **MAC Address**: This field provides the board’s MAC address (read-only field).
• **Power State**: Select **ON** to power on the Ethernet device. Select **OFF** to switch it back off. The change will be effective after clicking **Configure**.

Ethernet Settings:
• **DHCP**: Use this field to define the IP address of the board. If you want the network to assign an IP address dynamically to the board, select **Client** or **Server**, depending on whether you want to board to operate as a client or a server. If you want to assign a static IP address, select **OFF**. In that case, enter the following parameters: **IP address**, **Netmask** (network mask), **Gateway**, **DNS Address** and **DNS address 2**.

When you are done, don’t forget to click on the **Configure** button to save all your settings.

NTP Server
This tab allows you to enable the board’s internal NTP server (NTP for Network Time Protocol).
When you are done, don’t forget to click on the **Configure** button to save this setting.
When this option is active, the board can respond to any IP request for GNSS time (as soon as it can calculate GNSS time).

HTTP
This tab allows you to change the IP port through which the connection to the Web Server takes place. After you change the port ID and you click **Configure**, the IP connection is automatically restarted using the new IP port ID.

Dyn DNS
DynDNS is an update mechanism through which you can make sure the host name of your board will always match the dynamic IP address assigned to it by your Internet provider. This requires that you create an account on DynDNS and you choose the service you want to use (e.g. Standard DNS, Dynamic DNS or Managed DNS). Enter the following parameters:
• **Enable**: Check this button if you want to allow the board to connect to the DynDNS server after you have clicked on the **Configure** button.
• **System**: Type in “dyndns@dyndns.org”
• **Hostname**: Enter the host name you gave to the board when you created your DynDNS account.
• **User Name, Password**: Enter the user name and password you chose when creating your account on DynDNS. These will allow the board to establish an IP connection with the DynDNS server.

• **Forced Update Period**: Enter the interval of time (between 60 and 3600 s) at the end of which the board will be requested to automatically query the DynDNS server for updating the “host name vs. current IP address” pair.

• **Update Now** button: Click on this button if you want the board to query the DynDNS server for updating the “host name vs. current IP address” pair immediately after clicking on the **Configure** button.

When you are done, don’t forget to click on the **Configure** button to save all your new settings.

To create an account on DynDNS:

• Go to https://dyn.com/dns/

• Click on SIGN IN.

• Choose the service you want to use and then follow the instructions to complete the creation of your account.

Status Page

This page provides a summary of all the current settings pertaining to Ethernet and NTP Server. See example below.

<table>
<thead>
<tr>
<th>Ethernet</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Power State</td>
<td>ON</td>
</tr>
<tr>
<td>DHCP</td>
<td>ON</td>
</tr>
<tr>
<td>IP Address</td>
<td>10.20.4.38</td>
</tr>
<tr>
<td>Netmask</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>Gateway</td>
<td>10.20.4.1</td>
</tr>
<tr>
<td>DNS Address</td>
<td>10.20.8.30</td>
</tr>
<tr>
<td>DNS Address 2</td>
<td>10.2.1.70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NTP Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
</tr>
<tr>
<td>Status</td>
</tr>
</tbody>
</table>
This function is used to:

- Define the elevation masks, in degrees, used in position computation and for raw data collection (these angles are common to all GNSS constellations used).
- Select the GNSS constellations you want the board to work from (GPS, SBAS, GLONASS, Galileo, BeiDou, QZSS, L-Band). By default, all constellations are used.
- **Signals**: This option is used to place an input filter so that only some signals are actually tracked by the board. Select **All** for no filter (all signals tracked), **Optimal** for letting the board decide which signals should be tracked and used preferably, **Legacy** for asking the board to track only the signals that are compatible with previous generation software tools (GPS L2C discarded).
- Select the signal frequencies to use: L1/G1/E1/B1 ("L1" frequency) or L2/G2/E5b/B2 ("L2" frequency).

Enabling/Disabling Satellites
For each visible constellation, this function lists all the satellite IDs of the constellation. Use the tabs on top of the page to select a constellation. Use the check boxes in the table to enable or disable each of the satellites.
You can also use the Enable All or Disable All buttons to respectively use or reject all the satellites.

Tracking (Table, Graph, SkyPlot)
For each antenna, or for the two antennas when applicable, this function gives a detailed report on the constellations used, in the form of a table, bar graph or sky plot.

Columns “L1/G1/E1/B1-C/No” list the codes used to describe the signals received on the L1 frequency:

- **C**: L1 C/A (GPS, SBAS, QZSS), L1-SAIF (QZSS), G1 C/A (GLONASS), E1 (Galileo)
- **I**: B1 (BeiDou)
- **L**: L1C (GPS, QZSS), G1 P (GLONASS)
- **W**: L1 Z-tracking and similar (GPS)
Columns “L2/G2/E5b/B2-C/No” lists the codes used to describe the signals received on the L2 frequency:

- L: L2C (L) (GPS, QZSS)
- C: G2 C/A (GLONASS M)
- W: L2 Z-tracking or similar (GPS)
- P: G2 P (GLONASS)
- Q: E5b (Galileo)
- I: B2 (BeiDou)

NOTE: Signal codes may be combined. For instance, “C/W” reported in the tracking table means the two signals (C and W) are received simultaneously.

Memory

Recording

This tab deals with data recording (on the left), and memory statuses (on the right).

- **Data Recording** check box: Check on this box if you want to enable data recording. Keep it cleared otherwise.
- **Site Name**: Enter a 4-character name depicting the site where data recording will take place.
- **Memory Storage Location**: Tell the board where to store the recorded data. You can choose between *Internal Memory* and *USB Device*. On selecting one of these options, the line underneath *(Available space)* indicates the remaining free space on the selected memory.
- **Recording Interval**: Choose the recording rate (in minutes, seconds or Hertz). The lines underneath *(Data type...)* list the currently programmed messages and their respective output rates for each of the antennas used (if two are
used). Please select a recording interval that is equal to, or slower than the fastest output rate the board can use.

- **Ring File Memory**: With this option enabled, the board will be able to collect data for an unlimited period of time without user intervention. In practice, after this option has been enabled, the board will automatically delete the oldest file when the amount of available memory drops below 25 MBytes.

- **Record External Event**: Check this box if you wish to insert a TTT message into the record file whenever an external event is detected at the board’s input.

- **Record PPS**: Check this button if you wish to insert PTT messages into the record file to time-tag the PPS output signal.

- **Split Data into Preset Duration Files and File Duration**: Enable the first of these two options if you wish to create several data files with fixed duration rather than one single (huge) data file. Then choose that duration, in minutes or hours. Files will end at round times. For example if you ask for data recording at 4:50 and you choose a file duration of 30 minutes, then recording will start and 4:50 and the first file will end at 5:00.

When you are done, don’t forget to click on the **Configure** button to save all your new settings.

NOTE: If you want to log just NMEA messages and not the G-file and ATOM messages, you need to disable ATOM messages after enabling data recording. Go back to the **I/Os** tab to disable these messages.

RINEX Metadata

You can define the following additional and optional parameters for insertion into the header of every single RINEX file the board will generate:

- Agency
- Observer
- Marker Name
- Marker Number
- Observation Comment
- Navigation Comment

When you are done, don’t forget to click on the **Configure** button to save all your new settings.
Setting the MB-Two from the Web Server

Right Side of the Web Page

Memory

In the right-hand part of the screen:

- **Internal Memory** bargraph: Indicates the current percentage of free/busy space, as well as the total number of files stored in the internal memory. The total memory size is displayed to the right of the bargraph.

- **Log Files Memory** bargraph: Indicates the current percentage of free/busy space, as well as the number of files stored in the log memory. The total memory size is displayed to the right of the bargraph.

 The log memory is one of the two partitions created in the internal memory. It is dedicated to saving *.log files. A log file is generated for every day of operation. The log file is like a log book in which the different events of the day are listed in order of appearance.

- **USB Device** bargraph: Indicates the current percentage of free/busy space, as well as the number of files stored on the USB device. The total memory size is displayed to the
right of the bargraph. If there is no USB device, the bargraph reads "No File" and no memory size is mentioned to the right of the bargraph.

Files

• (List of files in selected memory): Select a memory (Internal Memory, Log Files Memory or USB Device). The table located underneath lists the files currently stored in this memory. You can filter the memory content to list only the G files stored in memory (check on the G-File Only box in this case).

The list shows the name, size and last modification date of each file.

– Delete All Files button: Deletes all the files from the selected memory but keeps all the existing folders and subfolders.

– Delete Files button: Deletes the selected file(s) or directory(ies).

– Transfer files to FTP server button: Transfers the selected file or files to the external FTP server defined in the fields just underneath (FTP Server, FTP Port, FTP Path, Username, Password).

– Copy to USB Device button: Copies the selected file or files to the USB device connected to the receiver.

– Convert into RINEX button: Converts the selected file or files according to the settings made in the G-File Conversion pane below.

– Download Selected Files button: Copies the selected file(s) to the computer. Folders cannot be downloaded.

NOTE 1: When the number of files in a folder exceeds 1000 files, you may use the “1”, “2”, etc. buttons and “<” and “>” buttons showing up on top of the upper-right corner of the list of files to list only a portion of this list on the screen (a few hundreds files listed). In this case sorting files according to name, size or creation date will apply to that particular portion of files.

NOTE 2: The total size of all the selected files is shown just above the Delete All Files button.

Transfer to External FTP Server

Enter the following parameters to define the external FTP server where the selected files will be copied after clicking on the Transfer files to FTP server button:

• FTP Server: Enter the FTP server name or IP address.
• **FTP Port**: Enter the IP port number of the external FTP server (default is 21).
• **FTP Path**: Enter the path of the directory on the external FTP server where the files will be stored.
• **Username, Password**: Enter the user profile allowing the receiver to access the external FTP server.

G-File Conversion
Enter the following parameters to define how the selected files will be converted to RINEX when clicking on the Convert into RINEX button:
• **RINEX Conversion**: Choose in which RINEX version to convert the selected file or files.
• **Select Antenna**: Choose which data in the selected files should be converted to RINEX, based on whether these data originate from either the primary antenna, the secondary antenna, or both.
• **File Compression**: Choose whether the converted files should be compressed. The available two compression algorithms (Hatanaka, Tar.Z) may be combined.
• **Select Data to Convert**: Select the GNSS constellations for which you want the corresponding data present in the selected files to be converted to RINEX. More constellations are available for conversion when selecting the most recent RINEX versions.

Configuration

This tab is used to:
• Install one or more firmware options, a geofencing zone or a warranty extension.
• List the versions of all the items used in the board (embedded firmware, firmware options, etc.).

Option Install
To install a new firmware option, you should first make sure you have the option code available, following your purchase of this option. Then:
• Choose “Automatic” in the Option drop-down list.
• Enter the option code in the field underneath (Code).
• Click on Install to complete the installation.
To install a geofencing zone, through which you limit the use of the board to a particular geographical area, you should first make sure you have the code available, following your purchase of this feature. Then:
• Use the Geofencing Zone drop-down list to select the country or area where the board is supposed to be used.
• Enter the code in the field underneath (Code).
• Click on Install to complete the installation.
To install an extended warranty, you should first make sure you have the code available, following your purchase of this extended warranty. Then:
• Enter the code in the Update Warranty Date field.
• Click on Install to complete the installation.

Firmware Upgrade
The board firmware can be upgraded in two different ways, depending on where the upgrade file (a tar file) is located:
• If you downloaded it to your computer, select “Local File” in the Upgrade source field, then click on the Choose File button to find the file on your computer and select it. When the Upload button is usable, click on it and wait until the upgrade is complete.
• If it’s posted on a remote server, select “FTP Server” in the Upgrade source field, then enter the address of the FTP server (IP address and port), as well as your login and password to access this server.

Click on to browse the FTP for a tar file. If the tar file is in the FTP’s root folder, its name will appear in the File Name field below.
If it’s in a sub-folder on the FTP, first type in that folder’s name in the Path field before clicking on \[\text{Upload}\].

Click on the Upload button to start the upgrade. Wait until the upgrade is complete.

NOTE 1: The currently installed version of firmware is indicated just above the Upload button.

NOTE 2: Don’t forget to click on the button shown at the end of the upgrade procedure. Through this action, all the information displayed on the different tabs of the Web Server will be properly refreshed following the installation of a new firmware version.

Board Configuration

Internal Data Update Rate Configuration (POP): Choose the rate at which the board processes internally the GNSS data it receives (rate expressed in Hz, from 1 to 50 Hz). Then click on the Configure button just underneath to make your new setting effective.

Save Configuration: The current board configuration can be saved as a file (*.par file) to the board’s internal memory or to a USB device. Select the desired storage device and then click Save. The name of the saved file then appears under the button.

Load Configuration: Any board configuration file (a “*.par” file) saved earlier to internal memory or USB device may be uploaded to another board thus providing this board with a new current configuration. Just select the desired file from
the selected memory. You may also use the Choose File button to browse for the desired configuration file if it is stored on your computer. Once the file has been selected, just click on Load.

You are allowed to load the configuration from another board provided this board is fitted with the same set of options as the board you are working on.

IMPORTANT! This action has no impact on the default configuration a board will be using following a reset operation on this board (see also next section).

Reset Configuration: You may change the configuration of your board by using one of the three buttons below:

- **Reset**: Will cause the board to restart with the default configuration (this will be either the factory settings or the user-defined default configuration if you created one (see below).
- **Reboot**: Will cause the board to restart without changing anything to its current configuration.
- **Reset to Factory Settings**: Will force the board to restart with the factory-set configuration.

Reset Embedded NTRIP Caster (visible only if NTRIP Caster option enabled): This button deletes all the information pertaining to the embedded NTRIP caster (settings, users and mount points).

User-Defined Default Configuration

Some users may be interested in giving their board a specific default configuration, different from the one they normally get after a reset operation. This is possible using a command file (a “*.cmd” file) containing a list of executable proprietary $PASH commands.

After the desired command file has been selected, the following takes place when you reset your board:

1. The factory defaults are first re-applied to the board.
2. The $PASH commands listed in the specified command file are then executed, thus modifying or complementing the factory defaults and giving the board a user-defined default configuration instead of the standard default one.

IMPORTANT: This feature is fully independent of the one described in the previous Board Configuration tab and deals with completely different files.
The User-Defined Default Configuration tab is organized as follows:

- **Command File Header**: A read-only field showing the content of the first line (starting with a #) read from the currently selected command file (usually contains identification of the resulting user-defined default configuration). “No File” is displayed if there has been no command file selected so far.

- **Delete Command File** pane: If a command file is currently selected, you may want not to use it anymore. In this case, just click on the **Delete** button. A subsequent reset operation would then result in reloading the standard default configuration.

- **Save Command File** pane: Use this pane to save the currently used command file to the board’s selected storage device (Internal Memory or USB Device). The file may be renamed before being saved to the selected device.

- **Load New Command File** pane: Allows you to select and load a new command file:
 - Select the storage device (board’s Internal Memory or USB Device) where the desired file is currently stored, and then select this file in the list underneath.
 - Or browse your computer disk and select the desired command file.

As a result, the name of the currently selected file is now shown in the **Selected Command File** field. Click the **Load** button to load the selected file. It is this file that will be run after a reset operation to change the standard default configuration into a user-defined configuration.

When the load operation is complete, the **Command File Header** field shows the content of the first line read from this file.

Terminal Window
This tab allows you to apply $PASH proprietary commands directly to the board. Type in the command in the text box and then press **Enter** on your keyboard or click on the **Send** button. Your command then appears in the text box underneath followed by the board response in a different color.

The syntax of all available commands is described in the **MB-Two Reference Manual**.

From time to time, use the **Clear View** button to empty the lower text box.
Identity & Alarms

The Status pane of the Configuration page provides a detailed description of the board (hardware, firmware, OS, geofencing, firmware warranty date, etc.), including the firmware options installed permanently and those installed for a limited period of time (temporary options).

For each temporary option, the expiration date is indicated. That date is removed from the table as soon as the option has expired.

<table>
<thead>
<tr>
<th>Option</th>
<th>Installed</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS G</td>
<td>✔️</td>
</tr>
<tr>
<td>GLONASS G</td>
<td>✔️</td>
</tr>
<tr>
<td>Galileo G</td>
<td>✔️</td>
</tr>
<tr>
<td>BeiDou B</td>
<td>✔️</td>
</tr>
<tr>
<td>L2 Frequency Tracking Y</td>
<td>✔️</td>
</tr>
<tr>
<td>L3 Frequency Tracking S</td>
<td>✔️</td>
</tr>
<tr>
<td>24h Output Rate 2</td>
<td>✔️</td>
</tr>
<tr>
<td>2N Output Rate S</td>
<td>✔️</td>
</tr>
<tr>
<td>10Hz Output Rate 6</td>
<td>✔️</td>
</tr>
<tr>
<td>20Hz Output Rate W</td>
<td>✔️</td>
</tr>
<tr>
<td>50Hz Output Rate B</td>
<td>✔️</td>
</tr>
<tr>
<td>RTK Base J</td>
<td>✔️</td>
</tr>
<tr>
<td>RTK Base K</td>
<td>✔️</td>
</tr>
<tr>
<td>Flying RTK F</td>
<td>✔️</td>
</tr>
<tr>
<td>Option</td>
<td>Installed</td>
</tr>
<tr>
<td>RAM I</td>
<td>✔️</td>
</tr>
<tr>
<td>Data Recording R</td>
<td>✔️</td>
</tr>
<tr>
<td>Altitude Limit Removed A</td>
<td>✔️</td>
</tr>
<tr>
<td>Speed Limit Removed V</td>
<td>✔️</td>
</tr>
<tr>
<td>DUO Mode D</td>
<td>✔️</td>
</tr>
<tr>
<td>3D-attitude E</td>
<td>✔️</td>
</tr>
<tr>
<td>L-stand L</td>
<td>✔️</td>
</tr>
<tr>
<td>Dithered RTK 30/30</td>
<td>✔️</td>
</tr>
<tr>
<td>Dithered RTK 7/2</td>
<td>✔️</td>
</tr>
<tr>
<td>CenterPoint RTX C</td>
<td>✔️</td>
</tr>
<tr>
<td>RangePoint RTX P</td>
<td>✔️</td>
</tr>
<tr>
<td>VNS/VisaPoint RTX J</td>
<td>✔️</td>
</tr>
<tr>
<td>FieldPoint RTX X</td>
<td>✔️</td>
</tr>
<tr>
<td>RTK Base EAM 1</td>
<td>✔️</td>
</tr>
</tbody>
</table>
Setting the MB-Two from the Web Server

Security

This tab deals with:
- Web Server access rights
- Startup protection

Web Access

This tab deals with the level of security applied to the Web Server. Its content depends on the currently used level of security:

1. Security has been enabled (**Security** = **Enabled**):
 - A logged in user can:
 - Read or change the level of security applied to the Web Server.
 - Log out.
 - Change the password. The password must be entered twice and must have at least medium strength (strength indicated as you enter the password).
 - Change all the board settings using the different tabs in the Web Server.

2. Security has been enabled with anonymous access (**Security** = **Enabled with Anonymous Access**):
 - The tab shows that this mode is currently active and indicates whether you can download or/and delete files.
 - Read, but not change, the current board settings using the different tabs in the Web Server.
 - A user can escape from the anonymous mode after entering the login and password on this tab.

When you are done, don’t forget to click on the **Configure** button to save all your new settings.
Setting the MB-Two from the Web Server

Startup Protection

This tab allows you to control the startup protection. When powering on a board with active startup protection, you are requested to enter the correct password to be able to use the board. As long as no correct password is typed in, the board is said to be “locked” and so operates with minimum functionality. Entering the correct password will unlock the board (the board will then switch to the “Unlocked” status). Only then will you be allowed to control the board from the Web Server.

IMPORTANT! By default the password does not exist. Because the protection can’t be activated until a valid password has been defined, you should first define and confirm the password. Once this is done and the protection has been activated using this password, no password change is allowed. You can however change the password if the startup protection is still active but you’ve already entered the password to unlock the board.

- If the startup protection is active when you open the tab, you will read **Startup Protection = Enabled.** In the status pane on the right, the board status will read “Unlocked” if the password has been typed in after powering on the board, or “Locked” if the board is still waiting for this password to be entered.

To disable the startup protection after you have logged in, enter the password and then click on the Disable button.

NOTE: When starting the Web Server of a currently startup-protected board, you will first be requested to log in, as you usually do as an authorized user, and then you will have to enter the password to unlock the board.

- If the startup protection is inactive when you open the tab, you will read **Startup Protection = Disabled.**

To enable the startup protection after you have logged in, enter the password and then click on the Enable button.

- If you are logged in, you can use the lower part of the tab to change the startup password. You need to enter the new password twice before you are allowed to save it by clicking on the Configure button.

Status Pane

This pane provides a summary of the current settings pertaining to Web Server access and startup protection.
Embedded NTRIP Caster

This tab is used to:

- Create a caster in the receiver
- Define miscellaneous information about this caster, to be forwarded to users, when this will be necessary.

By default, the NTRIP caster is disabled and there is no NTRIP caster password defined (the field is empty). Note that the NTRIP caster cannot be started until you define a password for the NTRIP caster.

Settings

Caster Settings:

- **Enable/Disable**: Use this button to enable the use of the NTRIP caster defined below.
- **Hostname or IP Address**
- **Password**: Define the password a base owner should enter to be allowed to connect her/his base station to the caster as a data provider (i.e. as one of the corrections sources available through the caster).

The **Show Password** button allows you to view and possibly change the password. Clicking on this button will show the password with masked characters. Enable the check box next to it to show the password in plain. By default the **Password** field is empty.

If you change the password, don’t forget to click on the **Configure** button to save it.
In anonymous mode, you are not allowed to view the password.

- **Maximum Simultaneous Connections per User**: Use this field to limit the number of simultaneous connections allowed per user.

Caster Information: This optional information will be forwarded to users when starting a connection to the caster:
- **Caster Identifier**
- **Caster Operator**
- **Latitude**: Caster latitude (in degrees, and fraction of degree)
- **Longitude**: Caster longitude (in degrees, and fraction of degree)
- **Fall Back Caster**: Caster where to connect to in case this one breaks down.
- **Network Identifier**
- **Network Operator**
- **Country**: The three-letter international code identifying the country where the caster is operated.
- **Fee**: Indicate whether the caster can be accessed for free or not (clear the box if it’s free).
- **Web Address for Network Information**: Enter the name of the website where users can get more information about the network.
- **Web Address for Stream Information**: Enter the name of the website where users can get more information about data streaming.
- **Web/Email Address for Registration**: Enter the name of the website or email address where users can register to be allowed to use the caster.

When you are done, don’t forget to click on the **Configure** button to save all your new settings.

Mount Points

Mount Point: Use this tab to define each of the mount points accessible via the caster. For each mount point, enter the following parameters:
- **Name**
- **Identifier**
- **Format**
• Format Details
• Latitude: Latitude of the mount point’s geographical location.
• Longitude: Longitude of the mount point’s geographical location.
• Country: The three-letter international code identifying the country where the mount point is operated.
• Fee: Indicate whether the mount point can be accessed for free or not (clear the box if it’s free).
• NMEA: Indicate whether or not the mount point needs to receive the user’s approximate position in NMEA format.

Mount Points List:
This table lists all the mount points created so far. Selecting a row in this table allows you to edit the corresponding mount point definition in the fields described above. After making the required changes, use the Add/Modify button to update the definition of the mount point in the table. If you define a mount point with a new name, clicking on this button will add this mount point to the table as a new row.

The Clear button is used to clear all the fields within the Mount Point frame.

The Delete button is used to delete the mount point you select in the table.

Users
User:
Use this tab to define, one by one, the users allowed to connect to the caster. For each user, enter the following parameters:
• Username
• Password: Define the password the user should enter to be allowed to use the caster. The password may be shown in plain (check the box nearby), or hidden, then displaying “*” characters instead.
• Mount Points List: For each user, check the mount point or mount points this user will be allowed to use. Enabling the check box the closest to Mount Points List allows you to select in one operation all the existing mount points listed in the table.

Users List:
This table lists all the users created so far. Selecting a row in this table allows you to edit the corresponding user definition in the fields described above. After making the required changes, use the Add/Modify button to update the definition of the user in the table. If you define a user with a new name, clicking on this button will add this user to the table as a new row.

The Clear button is used to clear all the fields within the User frame. The Delete button is used to delete the user you select in the table.

Current Source Activity:
Lists the current status of each mount point, the time when a connection to this mount point started and the IP address used.

Client Activity:
Lists the currently connected users, the mount point they are using, the start time and IP address of their connection.

History Source Activity:
Lists the last connections made. Each line provides the mount point used, the times when the connection was started and stopped and the IP address used for the connection.

Client Activity:
Lists the last users connected to the caster and now disconnected. Each line provides the user name, the mount point that was used and the times when the connection was started and stopped.

Log file
This tab lists the last actions performed, relevant to the caster.

Map
Geographic map showing the location of the caster (an orange spot). The map content is refreshed based on the value you give to Refresh Interval.
Chapter 6. Configuring the MB-Two Using Serial Commands

The MB-Two can be configured using proprietary commands known as the “$PASH” commands. Using these serial commands is not the fastest way of configuring a board. Usually, the web server – a smart interface also relying on the use of $PASH commands – will usually be the preferred tool. However, in some cases, you may want to apply serial commands directly. This chapter explains how to use them.

Introduction to Serial Commands

Serial commands allow you to communicate directly with the receiver in its proprietary command language. Serial commands can be used for various purposes such as:

- Changing default settings
- Monitoring different receiver statuses (internal operation, constellations, etc.)
- Outputting messages on request

Serial commands fall into two categories:

- **Set commands ($PASHS,...)**, used to set or modify the receiver’s internal parameters.
- **Query commands ($PASHQ,...)**, used to interrogate the receiver.

If you wish to change some internal settings in the receiver or modify the operating mode, then use the available set of $PASHS commands.

If you want to read the instant status of the receiver, use the set of $PASHQ commands. The receiver responds to $PASHQ commands by returning one of the following, depending on which $PASHQ command is sent:

- ASCII or binary formatted $PASHR sentences, for your reading or/and automatic parsing.
- Non-formatted responses, like for example ASCII tables, only for your reading (not intended for automatic parsing).
If you want to program the receiver so that it delivers its results at regular intervals, then you should also use the set of available $PASHS commands. The receiver will respond by delivering messages at the specified output rate. Messages fall into different groups:

- NME (standardized NMEA messages and NMEA-like Ashtech proprietary messages)
- ATM (Ashtech proprietary ATOM binary data)
- RT2 (Standardized RTCM-2 messages)
- RT3 (Standardized RTCM-3 messages)

CMR (Widely used TRIMBLE CMR messages)
A three-letter identifier is part of the $PASHS command header clearly identifying which group of data the command deals with. For example, "$PASHS,NME,GGA,A,ON,1" will enable the GGA NMEA message on port A at an output rate of 1 second.

Some $PASHS and $PASHQ commands can initiate the same $PASHR response. However, $PASHS will return $PASHR responses at regular intervals whereas $PASHQ will only return a single $PASHR response.

In general, all the messages of a given group are output inside a dedicated transport layer. For example, NMEA-like and RAW data are output using the Ashtech legacy $PASHR frame, whereas ATM and RT3 data are output using the standardized RTCM-3 transport protocol. For more convenience, using the $PASHS,ENC command, you can ask the receiver firmware to output all the groups via the same port and using the same frame (e.g. $PASHR).

Standard NMEA messages will all be output with the standard ASCII NMEA preamble (e.g. $GPGGA) and not with the "$PASHR.." preamble.
The few conventions used to describe the serial commands in this manual are summarized in the table below.

<table>
<thead>
<tr>
<th>String or symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$PASHS</td>
<td>Header for set commands (Whole line shown in bold characters)</td>
</tr>
<tr>
<td>$PASHQ</td>
<td>Header for query commands (Whole line shown in bold characters)</td>
</tr>
<tr>
<td>$PASHR</td>
<td>Receiver response line, in normal characters.</td>
</tr>
<tr>
<td>GP</td>
<td>Header in standard NMEA output messages for results provided by GPS.</td>
</tr>
<tr>
<td>GL</td>
<td>Header in standard NMEA output messages for results provided by GLONASS.</td>
</tr>
<tr>
<td>GA</td>
<td>Header in standard NMEA output messages for results provided by GALILEO.</td>
</tr>
<tr>
<td>GN</td>
<td>Header in standard NMEA output messages for results provided by GNSS (combination of several constellations).</td>
</tr>
<tr>
<td>GB</td>
<td>Header in standard NMEA output messages for results provided by BeiDou.</td>
</tr>
<tr>
<td>GQ</td>
<td>Header in standard NMEA output messages for results provided by QZSS.</td>
</tr>
<tr>
<td>$--</td>
<td>Header prefix for all standard NMEA messages delivered by the receiver.</td>
</tr>
<tr>
<td>[]</td>
<td>Optional field or parameter</td>
</tr>
<tr>
<td>,</td>
<td>Field delimiter</td>
</tr>
<tr>
<td>.</td>
<td>Decimal point (used in f-type fields)</td>
</tr>
<tr>
<td>c..</td>
<td>One-character string</td>
</tr>
<tr>
<td>d..</td>
<td>Integer</td>
</tr>
<tr>
<td>f..</td>
<td>Real number, with decimal places</td>
</tr>
<tr>
<td>h..</td>
<td>Parameter in hexadecimal notation</td>
</tr>
<tr>
<td>m..</td>
<td>Denotes specific data format used, such as angles (e.g. ddmm.mmm) or time (e.g. hhmmss.sss)</td>
</tr>
<tr>
<td>n</td>
<td>Used in the syntax of responses to query commands to indicate that a sequence of parameters will be repeated “n” times in the response. For example, n(1,2,3) means the response will include the sequence “1,2,3,1,2,3,1,2,3...”. The value of n is specific to each command.</td>
</tr>
<tr>
<td>s..</td>
<td>Character string</td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
</tr>
</tbody>
</table>

In response to a well recognized and properly executed set command, the receiver will return the message:

$PASHR,ACK*3D

A set command is said to be “NAKed” when it is not accepted or acknowledged. The following message is then returned:

$PASHR,NAK*3D
If this happens, check that the command has been typed correctly and the number and format of parameters are correct. In some cases, the execution of a set command may be contingent upon the prior activation of the corresponding firmware option.

Checksum Calculation: The checksum is computed by "exclusive-ORing" all of the bytes in the message between, but not including, the "$" and the "+". The result is ""hh" where h is a hexadecimal character.

Overview of the MB-Two Proprietary Commands

This section presents the complete list of proprietary commands applicable to the MB-Two board.

How to Read the Tables Below

The tables that follow introduce all the available commands per topic, listed in alphabetical order.

- When a set command has a direct query command counterpart (e.g. "$PASHQ,GPS" is the direct query command counterpart to "$PASHS,GPS"), it is simply indicated by a "•" character in the right-hand column (cell with blue background).
 - In most cases the description of the query command is obtained simply by replacing the first word "Setting", "Defining", etc., in the set command description with the term "Reading".

- When a query command has no direct set command counterpart, it is shown in a separate row. Its name appears in the right-hand column as well (orange background), together with its description in the middle column.

- When a set command has no direct query command counterpart, the corresponding cell in the right-hand column is empty.

For a detailed description of each command (syntax, fields, etc.), see Chapter 7 for set commands, and Chapter 8 for query commands.
GNSS Sensor Tracking

<table>
<thead>
<tr>
<th>Set Command</th>
<th>Description</th>
<th>Query Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDS</td>
<td>Enabling/disabling BeiDou tracking</td>
<td>•</td>
</tr>
<tr>
<td>GAL</td>
<td>Enabling/disabling Galileo tracking</td>
<td>•</td>
</tr>
<tr>
<td>GEM</td>
<td>Choosing geoid model</td>
<td>•</td>
</tr>
<tr>
<td>GLB</td>
<td>Choosing antenna input for L-band reception</td>
<td>•</td>
</tr>
<tr>
<td>GLx</td>
<td>Tracking signals in different bands</td>
<td>•</td>
</tr>
<tr>
<td>GLO</td>
<td>Enabling/disabling GLONASS tracking</td>
<td>•</td>
</tr>
<tr>
<td><GNS>.USE</td>
<td>Enabling/disabling tracking of a GNSS Satellite</td>
<td>•</td>
</tr>
<tr>
<td>GPS</td>
<td>Enabling/disabling GPS tracking</td>
<td>•</td>
</tr>
<tr>
<td>LBN.BEM</td>
<td>Other settings for user-added L-band satellites</td>
<td>•</td>
</tr>
<tr>
<td>LBN.USE</td>
<td>Tracking L-band providers/geo-satellites</td>
<td>•</td>
</tr>
<tr>
<td>LBN.SAT</td>
<td>Adding new L-band satellite manually</td>
<td>•</td>
</tr>
<tr>
<td>LBN</td>
<td>Reading L-band setup</td>
<td>•</td>
</tr>
<tr>
<td>QZS</td>
<td>Enabling/disabling QZSS tracking</td>
<td>•</td>
</tr>
<tr>
<td>SBA</td>
<td>Enabling/disabling SBAS tracking</td>
<td>•</td>
</tr>
<tr>
<td>SNS</td>
<td>Configuring M-Sensor</td>
<td>•</td>
</tr>
</tbody>
</table>

Application Setup

<table>
<thead>
<tr>
<th>Set Command</th>
<th>Description</th>
<th>Query Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>3DF</td>
<td>Running attitude on baselines. Reading status.</td>
<td>•</td>
</tr>
<tr>
<td>3DF.ANG</td>
<td>Maximum baseline elevation</td>
<td>•</td>
</tr>
<tr>
<td>3DF.CLB</td>
<td>Baseline auto-calibration</td>
<td>•</td>
</tr>
<tr>
<td>3DF.MXB</td>
<td>Setting baseline length tolerance</td>
<td>•</td>
</tr>
<tr>
<td>3DF.OFS</td>
<td>Heading-pitch-roll offset values</td>
<td>•</td>
</tr>
<tr>
<td>3DF.RST</td>
<td>Resetting attitude and calibration</td>
<td>•</td>
</tr>
<tr>
<td>3DF.Vx</td>
<td>Vector components</td>
<td>•</td>
</tr>
<tr>
<td>BLN</td>
<td>Defining baselines and their data sources</td>
<td>•</td>
</tr>
<tr>
<td>BRV</td>
<td>Relative mode</td>
<td>•</td>
</tr>
<tr>
<td>BRV.RST</td>
<td>Resetting relative positioning mode</td>
<td>•</td>
</tr>
<tr>
<td>RTK</td>
<td>Running RTK on set baselines</td>
<td>•</td>
</tr>
<tr>
<td>RTK.RST</td>
<td>RTK or RTX reset</td>
<td>•</td>
</tr>
<tr>
<td>RTK.SST</td>
<td>Defining which base data stream to use</td>
<td>•</td>
</tr>
<tr>
<td>RTX.DTM</td>
<td>RTX datum transformation</td>
<td>•</td>
</tr>
<tr>
<td>RTX.KPI</td>
<td>Known RTX initialization point</td>
<td>•</td>
</tr>
<tr>
<td>RTX.MOD</td>
<td>Specifying the RTX corrections service used</td>
<td>•</td>
</tr>
<tr>
<td>RTX.RST</td>
<td>Resetting RTX position computation</td>
<td>•</td>
</tr>
<tr>
<td>RTX.SRC</td>
<td>Specifying the RTX corrections source used</td>
<td>•</td>
</tr>
<tr>
<td>RTX</td>
<td>Reading RTX processing status</td>
<td>•</td>
</tr>
</tbody>
</table>

129
Other

<table>
<thead>
<tr>
<th>Set Command</th>
<th>Description</th>
<th>Query Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>MET,OWN</td>
<td>Entering local meteo parameters</td>
<td></td>
</tr>
<tr>
<td>MET,REF</td>
<td>Entering meteo parameters of reference</td>
<td></td>
</tr>
<tr>
<td>NME,TTI</td>
<td>Requesting the output of an event marker</td>
<td></td>
</tr>
<tr>
<td>PHE</td>
<td>Setting the active edge of the event marker pulse</td>
<td></td>
</tr>
<tr>
<td>PIN</td>
<td>Assigning function to programmable pin on I/O connector</td>
<td></td>
</tr>
<tr>
<td>PPS</td>
<td>Setting PPS pulse properties</td>
<td></td>
</tr>
</tbody>
</table>

GNSS PVT

Raw/Differential Messages

<table>
<thead>
<tr>
<th>Set Command</th>
<th>Description</th>
<th>Query Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM</td>
<td>Enabling/disabling ATOM messages</td>
<td></td>
</tr>
<tr>
<td>ATM,ALL</td>
<td>Disabling all ATOM messages</td>
<td></td>
</tr>
<tr>
<td>CMR</td>
<td>Enabling/disabling CMR or CMR+ messages</td>
<td></td>
</tr>
<tr>
<td>CMR,ALL</td>
<td>Disabling all CMR or CMR+ messages</td>
<td></td>
</tr>
<tr>
<td>RT2</td>
<td>Enabling/disabling RTCM 2.3 messages</td>
<td></td>
</tr>
<tr>
<td>RT2,ALL</td>
<td>Disabling all RTCM 2.3 messages</td>
<td></td>
</tr>
<tr>
<td>RT3</td>
<td>Enabling/disabling RTCM 3.1/3.2 messages</td>
<td></td>
</tr>
<tr>
<td>RT3,ALL</td>
<td>Disabling all RTCM 3.1/3.2 messages</td>
<td></td>
</tr>
</tbody>
</table>

NMEA and NMEA-Like Messages:
NMEA messages can be output manually using appropriate query commands (e.g. to output one GGA message, you can send the command "$PASHTQ,GGA" to the board and you will receive in return one GGA message tagged to the time of request.)
NMEA messages can also be output periodically (which is usually done) by programming their output using the $PASHS,NME command.

<table>
<thead>
<tr>
<th>Query Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOA</td>
<td>Attitude rate and accuracy</td>
</tr>
<tr>
<td>APR</td>
<td>Vector & Accuracy data</td>
</tr>
<tr>
<td>ATT</td>
<td>Legacy attitude message. HPR now preferred</td>
</tr>
<tr>
<td>AVR</td>
<td>Trimble "Time-Yaw-Tilt-Range" Message for Moving Baseline RTK</td>
</tr>
<tr>
<td>CAP</td>
<td>Received base antenna</td>
</tr>
<tr>
<td>CPA</td>
<td>Received antenna height</td>
</tr>
<tr>
<td>CPO</td>
<td>Received base position</td>
</tr>
<tr>
<td>DDM</td>
<td>Differential Decoder Message</td>
</tr>
<tr>
<td>DDS</td>
<td>Differential Decoder Status</td>
</tr>
<tr>
<td>DTM</td>
<td>Datum Reference</td>
</tr>
<tr>
<td>GBS</td>
<td>GNSS Satellite Fault Detection</td>
</tr>
<tr>
<td>GGA</td>
<td>GNSS position message</td>
</tr>
<tr>
<td>GGAx</td>
<td>Position & accuracy message (Trimble proprietary message)</td>
</tr>
<tr>
<td>GLL</td>
<td>Geographic Position - Latitude/Longitude</td>
</tr>
<tr>
<td>GMP</td>
<td>GNSS Map Projection Fix Data</td>
</tr>
<tr>
<td>GNS</td>
<td>GNSS Fix Data</td>
</tr>
<tr>
<td>GRS</td>
<td>GNSS Range Residuals</td>
</tr>
<tr>
<td>GSA</td>
<td>GNSS DOP and Active Satellites</td>
</tr>
<tr>
<td>GST</td>
<td>GNSS Pseudo-Range Error Statistics</td>
</tr>
<tr>
<td>GSV</td>
<td>GNSS Satellites in View</td>
</tr>
<tr>
<td>HDT</td>
<td>True Heading</td>
</tr>
<tr>
<td>HPR</td>
<td>Attitude, UTC time-tagged</td>
</tr>
<tr>
<td>LTN</td>
<td>Latency</td>
</tr>
<tr>
<td>POS</td>
<td>Position</td>
</tr>
<tr>
<td>PSP</td>
<td>Received physical reference station position</td>
</tr>
<tr>
<td>FTT</td>
<td>PPS time tag</td>
</tr>
<tr>
<td>RCA</td>
<td>Received CMR Type 2 Attribute</td>
</tr>
<tr>
<td>RCS</td>
<td>Recording status</td>
</tr>
<tr>
<td>RMC</td>
<td>Recommended Minimum Specific GNSS Data</td>
</tr>
<tr>
<td>ROT</td>
<td>Rate of turn</td>
</tr>
<tr>
<td>RSP</td>
<td>Received reference station position</td>
</tr>
<tr>
<td>SBD</td>
<td>BeiDou Satellites Status</td>
</tr>
<tr>
<td>SGa</td>
<td>GALILEO Satellites Status</td>
</tr>
<tr>
<td>SGL</td>
<td>GLONASS Satellites Status</td>
</tr>
<tr>
<td>SLB</td>
<td>L-Band Satellites Status</td>
</tr>
<tr>
<td>SOZ</td>
<td>DZSS Satellites Status</td>
</tr>
<tr>
<td>SSB</td>
<td>SBAS Satellites Status</td>
</tr>
<tr>
<td>TEM</td>
<td>Die temperature</td>
</tr>
<tr>
<td>THS</td>
<td>True Heading and Status</td>
</tr>
<tr>
<td>TTF</td>
<td>Event Marker</td>
</tr>
</tbody>
</table>
Configuring the MB-200 Using Serial Commands

GSOF Messages

<table>
<thead>
<tr>
<th>Message #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSF 1</td>
<td>Position Time</td>
</tr>
<tr>
<td>GSF 2</td>
<td>Lat Lon Height</td>
</tr>
<tr>
<td>GSF 3</td>
<td>ECEF Position</td>
</tr>
<tr>
<td>GSF 9</td>
<td>PDOP Info</td>
</tr>
<tr>
<td>GSF 11</td>
<td>Position VCV Info</td>
</tr>
<tr>
<td>GSF 12</td>
<td>Position Sigma Info</td>
</tr>
<tr>
<td>GSF 16</td>
<td>Current UTC Time</td>
</tr>
<tr>
<td>GSF 38</td>
<td>Position Type Information</td>
</tr>
<tr>
<td>GSF 33</td>
<td>All SV Brief Info</td>
</tr>
</tbody>
</table>

NMEA 2000 Messages

<table>
<thead>
<tr>
<th>Message Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Time</td>
<td>129992</td>
</tr>
<tr>
<td>Position, Rapid Update</td>
<td>129025</td>
</tr>
<tr>
<td>COG and SOG, Rapid Update</td>
<td>129026</td>
</tr>
<tr>
<td>Position Delta, High Precision Rapid Update</td>
<td>129027</td>
</tr>
<tr>
<td>Altitude Delta, High Precision Rapid Update</td>
<td>129028</td>
</tr>
<tr>
<td>GNSS Position Data</td>
<td>129029</td>
</tr>
<tr>
<td>GNSS Sats in View</td>
<td>129540</td>
</tr>
<tr>
<td>GNSS Pseudorange Noise Statistics</td>
<td>129542</td>
</tr>
</tbody>
</table>

Set Commands

GSOF Messages

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSF</td>
<td>Enabling/Disabling GSOF Messages</td>
</tr>
<tr>
<td>GSF,ALL</td>
<td>Disabling all GSOF Messages on a Port</td>
</tr>
</tbody>
</table>

NMEA 2000 Messages

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGN</td>
<td>Enabling/Disabling NMEA 2000 Messages</td>
</tr>
<tr>
<td>PGN,ALL</td>
<td>Disabling all NMEA 2000 Messages</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT,GSF</td>
<td>Current Status of GSOF Messages</td>
</tr>
</tbody>
</table>

Query Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT,GSF</td>
<td>Current Status of GSOF Messages</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT,PGN</td>
<td>Current Status of NMEA 2000 Messages</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GNSS Sats in View</td>
<td>129540</td>
</tr>
<tr>
<td>GNSS Pseudorange Noise Statistics</td>
<td>129542</td>
</tr>
</tbody>
</table>
PPP Services

<table>
<thead>
<tr>
<th>Set Command</th>
<th>Description</th>
<th>Query Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPP</td>
<td>Selecting PPP service</td>
<td>PPP</td>
</tr>
<tr>
<td></td>
<td>Reading information on TERIAsat</td>
<td>TRS</td>
</tr>
<tr>
<td>PPS, RST</td>
<td>Resetting PPS service</td>
<td></td>
</tr>
<tr>
<td>PPS, SRC</td>
<td>Defining corrections input for PPP service</td>
<td></td>
</tr>
</tbody>
</table>

Antennas/Receiver Attributes

<table>
<thead>
<tr>
<th>Set Command</th>
<th>Description</th>
<th>Query Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANH</td>
<td>Setting antenna height</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antenna parameters</td>
<td>ANP</td>
</tr>
<tr>
<td>ANP, OUT</td>
<td>Defining a virtual antenna</td>
<td></td>
</tr>
<tr>
<td>ANP, OVN</td>
<td>Naming the local antenna or 2nd local antenna</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antenna name and offsets of received base</td>
<td>ANP, RCV</td>
</tr>
<tr>
<td>ANP, REF</td>
<td>Naming the antenna used at the base</td>
<td></td>
</tr>
<tr>
<td>ANR</td>
<td>Setting the antenna reduction mode</td>
<td></td>
</tr>
<tr>
<td>ANT</td>
<td>Setting the antenna height (alternative)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Status of antennas</td>
<td>AST</td>
</tr>
<tr>
<td>RCP, OVN</td>
<td>Naming the local receiver</td>
<td></td>
</tr>
<tr>
<td>RCP, REF</td>
<td>Naming the reference receiver</td>
<td></td>
</tr>
</tbody>
</table>
Configuring the MB-Two Using Serial Commands

General Purpose

<table>
<thead>
<tr>
<th>Set Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATH,PWD</td>
<td>Defining the startup protection password</td>
</tr>
<tr>
<td>DIF,BDS</td>
<td>BeiDou correcting data</td>
</tr>
<tr>
<td>DIF,SBA</td>
<td>Specifying which SBAS corrections to use</td>
</tr>
<tr>
<td>DYN</td>
<td>Setting receiver dynamics</td>
</tr>
<tr>
<td>ELM</td>
<td>Setting the elevation mask for raw data output</td>
</tr>
<tr>
<td>ENC</td>
<td>Setting data transport mode</td>
</tr>
<tr>
<td>LCK,MOD</td>
<td>Controlling receiver lock</td>
</tr>
<tr>
<td>LCK,OFF</td>
<td>Unlocking the receiver (startup protection)</td>
</tr>
<tr>
<td>LCK,ON</td>
<td>Locking the receiver (startup protection)</td>
</tr>
<tr>
<td>LCS</td>
<td>Enabling/disabling use of the local coordinate system</td>
</tr>
<tr>
<td>MET,REF</td>
<td>Entering meteorological parameters</td>
</tr>
<tr>
<td>NPT</td>
<td>Defining how RTX and SBAS positions are tagged in POS messages</td>
</tr>
<tr>
<td>OCC</td>
<td>Writing occupation data to raw data file</td>
</tr>
<tr>
<td>PEM</td>
<td>Setting the position elevation mask</td>
</tr>
<tr>
<td>PGS</td>
<td>Defining the primary GNSS system</td>
</tr>
<tr>
<td>POP</td>
<td>Setting internal update rate for measurements and PVT</td>
</tr>
<tr>
<td>POS</td>
<td>Setting the antenna position</td>
</tr>
<tr>
<td>POS,CUR</td>
<td>Making the current position the reference position</td>
</tr>
<tr>
<td>POS,MOV</td>
<td>Making the current position the reference position</td>
</tr>
<tr>
<td>Site name</td>
<td>Setting the base position</td>
</tr>
<tr>
<td>STI</td>
<td>Defining a station ID</td>
</tr>
<tr>
<td>TOP</td>
<td>Defining the type of output position</td>
</tr>
<tr>
<td>UDP</td>
<td>User-defined dynamic model parameters</td>
</tr>
<tr>
<td>VIP</td>
<td>Defining a virtual port</td>
</tr>
<tr>
<td>VLP</td>
<td>Receiver validity period</td>
</tr>
<tr>
<td>ZDA</td>
<td>Setting date & time</td>
</tr>
</tbody>
</table>
Communication Ports

<table>
<thead>
<tr>
<th>Set Command</th>
<th>Description</th>
<th>Query Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN,OFF</td>
<td>Disabling the CAN port</td>
<td>CAN</td>
</tr>
<tr>
<td>CAN,ON</td>
<td>Enabling the CAN port</td>
<td></td>
</tr>
<tr>
<td>CAN,PAR</td>
<td>Setting the CAN parameters</td>
<td></td>
</tr>
<tr>
<td>DSY</td>
<td>Setting daisy chain</td>
<td></td>
</tr>
<tr>
<td>PRT</td>
<td>Setting baud rates for serial ports</td>
<td></td>
</tr>
</tbody>
</table>

Differential Messages

<table>
<thead>
<tr>
<th>Set Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT,DIF,OFF</td>
<td>Disabling all differential messages</td>
</tr>
</tbody>
</table>

Ethernet

<table>
<thead>
<tr>
<th>Set Command</th>
<th>Description</th>
<th>Query Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDN,PAR</td>
<td>Setting the DynDNS service</td>
<td></td>
</tr>
<tr>
<td>DDN,SET</td>
<td>Sending the IP address manually to DynDNS</td>
<td></td>
</tr>
<tr>
<td>ETD,PAR</td>
<td>Ethernet driver parameters</td>
<td>ETD</td>
</tr>
<tr>
<td>ETH,OFF</td>
<td>Powering off Ethernet port</td>
<td></td>
</tr>
<tr>
<td>ETH,ON</td>
<td>Powering on Ethernet port</td>
<td></td>
</tr>
<tr>
<td>ETH,PAR</td>
<td>Setting Ethernet parameters</td>
<td>ETH</td>
</tr>
<tr>
<td>FTP,OFF</td>
<td>Ending data transfer with FTP</td>
<td></td>
</tr>
<tr>
<td>FTP,PAR</td>
<td>Setting an external FTP server</td>
<td></td>
</tr>
<tr>
<td>FTP,PUT</td>
<td>Uploading files to FTP</td>
<td>FTP</td>
</tr>
<tr>
<td>TCP,PAR</td>
<td>Setting the TCP/IP server</td>
<td></td>
</tr>
<tr>
<td>TCP,UID</td>
<td>Entering login/password for TCP/IP connection</td>
<td></td>
</tr>
<tr>
<td>WEB,OWN</td>
<td>Setting owner information</td>
<td></td>
</tr>
<tr>
<td>WEB,PAR</td>
<td>Setting web server control & admin profile</td>
<td></td>
</tr>
</tbody>
</table>

Reading Ethernet status and parameters

Summary

- **CAN,OFF**: Disables the CAN port.
- **CAN,ON**: Enables the CAN port.
- **CAN,PAR**: Sets the CAN parameters.
- **DSY**: Sets daisy chain.
- **PRT**: Sets baud rates for serial ports.
- **OUT,DIF,OFF**: Disables all differential messages.
- **DDN,PAR**: Sets the DynDNS service.
- **DDN,SET**: Sends the IP address manually to DynDNS.
- **ETD,PAR**: Sets Ethernet driver parameters.
- **ETH,OFF**: Powers off the Ethernet port.
- **ETH,ON**: Powers on the Ethernet port.
- **ETH,PAR**: Sets Ethernet parameters.
- **FTP,OFF**: Ends data transfer with FTP.
- **FTP,PAR**: Sets an external FTP server.
- **FTP,PUT**: Uploads files to FTP.
- **TCP,PAR**: Sets the TCP/IP server.
- **TCP,UID**: Enters login/password for TCP/IP connection.
- **WEB,OWN**: Sets owner information.
- **WEB,PAR**: Sets web server control & admin profile.

Reading Ethernet status and parameters.
GNSS Network

<table>
<thead>
<tr>
<th>Set Command</th>
<th>Description</th>
<th>Query Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>CST,ON</td>
<td>Starting the embedded NTRIP caster</td>
<td></td>
</tr>
<tr>
<td>CST,OFF</td>
<td>Stopping the embedded NTRIP caster</td>
<td></td>
</tr>
<tr>
<td>CST,MTP,ADD</td>
<td>Adding/modifying mount points</td>
<td></td>
</tr>
<tr>
<td>CST,MTP,DEL</td>
<td>Deleting a mount point</td>
<td></td>
</tr>
<tr>
<td>CST,PAR</td>
<td>Setting embedded NTRIP caster parameters</td>
<td></td>
</tr>
<tr>
<td>CST,USR,ADD</td>
<td>Adding/modifying NTRIP caster users</td>
<td></td>
</tr>
<tr>
<td>CST,USR,DEL</td>
<td>Deleting an NTRIP caster user</td>
<td></td>
</tr>
<tr>
<td>DIP,OFF</td>
<td>Terminating Direct IP connection</td>
<td>DIP</td>
</tr>
<tr>
<td>DIP,ON</td>
<td>Establishing the Programmed Direct IP Connection</td>
<td>DIP</td>
</tr>
<tr>
<td>DIP,PAR</td>
<td>Setting Direct IP parameters</td>
<td>DIP</td>
</tr>
<tr>
<td>NTP,LOD</td>
<td>Loading the NTRIP caster source table</td>
<td>NTP</td>
</tr>
<tr>
<td>NTR,MTP</td>
<td>Connecting receiver to NTRIP caster mount point</td>
<td>NTR</td>
</tr>
<tr>
<td>NTR,PAR</td>
<td>Setting NTRIP parameters</td>
<td>NTR</td>
</tr>
<tr>
<td></td>
<td>Reading current NTRIP settings</td>
<td>NTR</td>
</tr>
<tr>
<td></td>
<td>Reading source table stored in receiver</td>
<td>NTR,TBL</td>
</tr>
</tbody>
</table>

Log & Alarms

<table>
<thead>
<tr>
<th>Set Command</th>
<th>Description</th>
<th>Query Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALR,ACK</td>
<td>Acknowledging alarms</td>
<td>ALR</td>
</tr>
<tr>
<td>LOG,DEL</td>
<td>Deleting log files</td>
<td>LOG</td>
</tr>
<tr>
<td>LOG,PAR</td>
<td>Setting the log file</td>
<td>LOG</td>
</tr>
<tr>
<td></td>
<td>Editing a log file</td>
<td>LOG</td>
</tr>
<tr>
<td></td>
<td>Listing log files</td>
<td>LOG,LST</td>
</tr>
</tbody>
</table>
Memory & Data Recording

<table>
<thead>
<tr>
<th>Set Command</th>
<th>Description</th>
<th>Query Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRD</td>
<td>Setting G-file duration</td>
<td>FIL.CUR</td>
</tr>
<tr>
<td>DRI</td>
<td>Setting raw data recording rate</td>
<td>FIL.LST</td>
</tr>
<tr>
<td>FIL.CPY</td>
<td>Copying Files from Internal to External Memory</td>
<td>FIL.CUR</td>
</tr>
<tr>
<td>FIL.DEL</td>
<td>Deleting Files and Directories</td>
<td>FIL.LST</td>
</tr>
<tr>
<td>FIL.GET</td>
<td>Downloading a File Thru the Current Port</td>
<td>FIL.CUR</td>
</tr>
<tr>
<td>FIL.WRT</td>
<td>Writing a file</td>
<td>FIL.LST</td>
</tr>
<tr>
<td></td>
<td>Reading information On G-file being recorded</td>
<td>FIL.CUR</td>
</tr>
<tr>
<td></td>
<td>Listing files in receiver memory or USB key</td>
<td>FIL.LST</td>
</tr>
<tr>
<td></td>
<td>Reading memory status</td>
<td>FIL.LST</td>
</tr>
<tr>
<td>FMT</td>
<td>Formatting internal memory</td>
<td>FIL.CUR</td>
</tr>
<tr>
<td>MEM</td>
<td>Selecting memory device used</td>
<td>FIL.LST</td>
</tr>
<tr>
<td>REC</td>
<td>Enable/disable, start/stop raw data recording</td>
<td>FIL.LST</td>
</tr>
<tr>
<td>RFM</td>
<td>Enable/disable Ring File Memory</td>
<td>FIL.CUR</td>
</tr>
</tbody>
</table>

RINEX Conversion

<table>
<thead>
<tr>
<th>Set Command</th>
<th>Description</th>
<th>Query Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>RXC.PAR</td>
<td>Setting the Embedded RINEX Converter</td>
<td>RXC.PAR</td>
</tr>
<tr>
<td>RXC.RUN</td>
<td>Converting a G-File into RINEX Files</td>
<td>RXC.PAR</td>
</tr>
</tbody>
</table>

Receiver Configuration

<table>
<thead>
<tr>
<th>Set Command</th>
<th>Description</th>
<th>Query Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMD.LOD</td>
<td>Running a List of $PASH commands</td>
<td>DFC</td>
</tr>
<tr>
<td>CMD.WTI</td>
<td>Inserting Wait Times</td>
<td>DFC</td>
</tr>
<tr>
<td>DFC.DEL</td>
<td>Deleting the default configuration file</td>
<td>DFC</td>
</tr>
<tr>
<td>DFC.GET</td>
<td>Duplicating the default configuration file</td>
<td>DFC</td>
</tr>
<tr>
<td>DFC.SET</td>
<td>Setting the default configuration file</td>
<td>DFC</td>
</tr>
<tr>
<td>DFC.TST</td>
<td>Testing the default configuration file</td>
<td>DFC</td>
</tr>
<tr>
<td>DIF.NET</td>
<td>Processing mode in network rover</td>
<td>DFC</td>
</tr>
<tr>
<td>OPTION</td>
<td>Installing a firmware option</td>
<td>DFC</td>
</tr>
<tr>
<td></td>
<td>Installed firmware options & expiration dates</td>
<td>DFC</td>
</tr>
<tr>
<td>PAR.LOD</td>
<td>Loading receiver configuration from PAR file</td>
<td>DFC</td>
</tr>
<tr>
<td>PAR.SAV</td>
<td>Saving receiver configuration as PAR file</td>
<td>DFC</td>
</tr>
<tr>
<td>RID</td>
<td>Reading the board’s identification parameters</td>
<td>DFC</td>
</tr>
<tr>
<td>UPL.PAR</td>
<td>Setting the FTP server providing firmware upgrades</td>
<td>DFC</td>
</tr>
<tr>
<td>UPL.UPG</td>
<td>Upgrading the receiver firmware from FTP</td>
<td>DFC</td>
</tr>
<tr>
<td></td>
<td>FTP server providing firmware upgrades</td>
<td>DFC</td>
</tr>
<tr>
<td></td>
<td>Editing the firmware upgrade log file</td>
<td>DFC</td>
</tr>
<tr>
<td></td>
<td>Listing the firmware upgrades available on FTP</td>
<td>DFC</td>
</tr>
</tbody>
</table>
Configuring the MB-Two Using Serial Commands

<table>
<thead>
<tr>
<th>Set Command</th>
<th>Description</th>
<th>Query Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>VERSION</td>
<td>Reading firmware version</td>
<td></td>
</tr>
</tbody>
</table>

UHF Radio

<table>
<thead>
<tr>
<th>Set Command</th>
<th>Description</th>
<th>Query Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDP,PAR</td>
<td>Setting the radio</td>
<td></td>
</tr>
<tr>
<td>RDP,TYP</td>
<td>Defining the type of radio used</td>
<td></td>
</tr>
<tr>
<td>RDP,CHT</td>
<td>Reading the radio channel settings</td>
<td></td>
</tr>
<tr>
<td>RDP,PWR</td>
<td>Reading radio type and radiated power</td>
<td></td>
</tr>
</tbody>
</table>

Other Important Commands

<table>
<thead>
<tr>
<th>Set Command</th>
<th>Description</th>
<th>Query Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATL</td>
<td>Controlling the recording of debug messages</td>
<td></td>
</tr>
<tr>
<td>INI</td>
<td>Resetting the board according to your preferences</td>
<td></td>
</tr>
<tr>
<td>NME,ALL</td>
<td>Enabling/disabling NMEA messages</td>
<td></td>
</tr>
<tr>
<td>OUT,ALL</td>
<td>Disabling all periodic messages</td>
<td></td>
</tr>
<tr>
<td>PWR,OFF</td>
<td>Preparing the board before being turned off</td>
<td></td>
</tr>
<tr>
<td>RST</td>
<td>Resetting the board parameters to their default values.</td>
<td>RCS</td>
</tr>
</tbody>
</table>
This chapter provides a detailed description of all the $PASHS$ commands applicable to the MB-Two board. The commands are listed in alphabetical order, irrespective of their use domain.

In this chapter, you will see the terms “board” and “receiver” mentioned repeatedly in the description of each command. Be aware the two terms are here strictly equivalent. They both designate the MB-Two.

3DF: Running Attitude Processing on Set Baselines

Function

This command is used to run the attitude process over all the baselines (up to three) you have defined using command $PASHS,BLN$. The antennas are in this case installed on a rigid platform, occupying fixed positions relatively to one another (“Steady” mode).

The command may also be used to compute heading from a single baseline of changing length (“Flex” mode). In Flex mode, no baseline length auto-calibration is required: Valid heading is delivered once baseline ambiguity has been resolved. This operating mode is quite similar to what you get with BRV.

The command can also be used to stop the attitude or heading process.

When a baseline engine is included in a 3DF process, it is assumed that the type of base it is working from is a moving one. Each of the baselines included in a 3DF process is a source of angle estimate and cannot be a source of position solution.

Command Format

Syntax

General:

$PASHS,3DF,ON,d1[,d2[,d3]][*cc]$

“Flex” mode:
Set Command Library

\$PASHS,3DF,ON,d1,FLX[*cc]\]

To stop the attitude process:
\$PASHS,3DF,OFF[*cc]\]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>First baseline number</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>d2</td>
<td>Second baseline number</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>d3</td>
<td>Third baseline number</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>00-FF</td>
</tr>
</tbody>
</table>

Comments

The following combinations are possible today:

• Heading computed from baseline #2 (engine #2):
 \$PASHS,3DF,ON,2

• Full attitude computed from baselines #2 and #3 (engines #2 and #3):
 \$PASHS,3DF,ON,2,3

• Full attitude computed from baselines #2, #3 and #1 (engines #2, #3 and #1):
 \$PASHS,3DF,ON,2,3,1

• Flex attitude computed from baseline #1:
 \$PASHS,3DF,ON,1,FLX

• Flex attitude computed from baseline #2:
 \$PASHS,3DF,ON,2,FLX

• Flex attitude computed from baseline #3:
 \$PASHS,3DF,ON,3,FLX

Auto-calibration should be resumed or baseline vectors should be re-defined whenever you change the operating mode using this command.
For a smooth transition from steady to flex mode (and vice versa), it’s a good practice to stop the attitude/heading mode temporarily using command \$PASHS,3DF,OFF.
3DF,ANG: Maximum Baseline Elevation

Function
This command is used to define the maximum elevation possible for each baseline. In most cases, this amounts to setting the maximum pitch or/and roll angle possible.

Command Format Syntax
$PASHS,3DF,ANG,f1[*cc]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>f1</td>
<td>Maximum value of baseline elevation, in degrees.</td>
<td>0-45</td>
<td>15</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
<td></td>
</tr>
</tbody>
</table>

Example
Setting maximum baseline elevation to 30°:
$PASHS,3DF,ANG,30*0F

Comments
- If the elevation determined by the receiver for a baseline is greater than this preset limit, then the baseline is rejected from the attitude process.
- The value you assign to the maximum permitted baseline elevation has no impact on the calibration process.

3DF,CLB: Running/Resetting Baseline Auto-Calibration

Function
This command is used to auto-calibrate the attitude processing by calculating each of the vectors resulting from the antenna setup you implemented. Depending on your antenna setup, you may have one (V12), two (V12+V13) or three (V12+V13+V14) vectors involved in the calibration. Once determined, the calibration values will then be used for attitude determination.

Command Format Syntax
$PASHS,3DF,CLB[*cc]
Set Command Library

Parameters
None.

Comments
- It is your own responsibility to align or not the antenna setup with the vehicle's centerline and set offset values accordingly (see $PASHS,3DF,OFS).
- If some of the vectors have already known values (they were entered manually or calculated in a previous calibration), then running a new calibration will result in overwriting these known values with the results of the new calibration.
- If you run this command while a calibration is already in progress, this will reset/restart the calibration process.
- If this command is issued after the attitude mode has been turned off ($PASHS,3DF,MOD,OFF), it is saved in memory and started automatically as soon as the attitude mode is turned back on.
- While auto-calibration is in progress, all attitude-related messages, such as HPR or HDT, will not deliver angles (the corresponding fields will all be empty), but some other fields may be populated.

3DF,MXB: Setting Baseline Length Tolerance

Function
This command is used to specify the accepted tolerance on the possible variations of baseline lengths. When the attitude mode calculates a baseline length that exceeds the tolerance, that baseline is rejected from the attitude computation.

Command Format Syntax
$PASHS,3DF,MXB,f1[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>f1</td>
<td>Baseline tolerance, in meters</td>
<td>0-1.0</td>
<td>0.02</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
<td></td>
</tr>
</tbody>
</table>

Example
Allowing the computed values of baseline lengths to vary by no more than 15 centimeters:
Set Command Library

$PASHS,3DF,MXB,0.15'09

Comments
- Setting the baseline tolerance has no impact on the calibration process.
- In most cases, the baseline length tolerance can be interpreted as the sum of a-priori uncertainty and admissible flexibility during operation.

3DF,OF5: Defining Heading-Pitch-Roll Offset Values

Function
This command is used to give the orientation of the antenna setup with respect to the vehicle. By defining the offset values, you define the rotation matrix from the antenna setup to the vehicle’s reference frame (OXYZ).
By default, the antenna setup is assumed to be aligned with the vehicle and all antennas are are the same height (all offset values are 0 by default).

Command Format

Syntax

$PASHS,3DF,OF5,f1,f2,f3[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>f1</td>
<td>Heading offset, in degrees. See also comment below.</td>
<td>±180°</td>
<td>0</td>
</tr>
<tr>
<td>f2</td>
<td>Pitch offset, in degrees. See also comment below.</td>
<td>±90°</td>
<td>0</td>
</tr>
<tr>
<td>f3</td>
<td>Roll offset, in degrees</td>
<td>±90°</td>
<td>0</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
<td></td>
</tr>
</tbody>
</table>

Example

Entering a heading offset for the antenna setup:

$PASHS,3DF,OF5,-12.5,0,0*2B

Comments

- Offset values apply to both auto-calibrated vectors and those entered manually via $PASHS,3DF,Vx
- With only one vector specified ($PASHS,3DF,x), fields f1 and f2 designate respectively the azimuth offset and
The elevation offset of the vector (V12), but signs are opposite those.

3DF,RST: Resetting Attitude Computation and Calibration

Function
This command is used to reset the carrier ambiguity for each baseline and forces each of them to re-initialize. You should therefore expect some short delay before attitude data are delivered, corresponding to the time elapsed before ambiguities are solved.

Command Format
Syntax

$PASHS,3DF,RST[*cc]

Parameters
None.

Comments
- All settings made earlier using the other $PASHS,3DF,... commands are not affected by this command.
- This command has no effect on which GNSS signals are tracked.
- This command is always valid ("ACKed") whether the attitude mode is enabled or not, but it has no effect if the attitude mode is currently off.
- This command has no effect if it is issued while a calibration is in progress.
3DF,Vx: Entering Vector Components

Function This command is used to enter the components of each vector used in the attitude computation.

Command Format Syntax

$$ \text{Syntax:} \, \$\text{TASHS,3DF,Vx2,x12,y12,z12[*cc]}$$

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>V12</td>
<td>Designates first vector</td>
<td>-</td>
</tr>
<tr>
<td>x12,y12,z12</td>
<td>x,y,z components of first vector, in meters.</td>
<td>±999.999</td>
</tr>
<tr>
<td>V13</td>
<td>Designates second vector</td>
<td>-</td>
</tr>
<tr>
<td>x13,y13,z13</td>
<td>x,y,z components of second vector, in meters.</td>
<td>±999.999</td>
</tr>
<tr>
<td>V14</td>
<td>Designates third vector</td>
<td>-</td>
</tr>
<tr>
<td>x14,y14,z14</td>
<td>x,y,z components of second vector, in meters.</td>
<td>±999.999</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>00-FF</td>
</tr>
</tbody>
</table>

Example

Entering vector components for first vector:

$$ \text{Example:} \, \$\text{TASHS,3DF,V12.0.8.3.0.2A}$$

Comments

- Depending on how you configured the attitude mode (see \$\text{TASHS,3DF,CFG}), you will be required to enter the components of one vector (V12), two vectors (V12+V13) or three vectors (V12+V13+V14) before they can actually be used in attitude mode.

- With a single vector (V12), remember this vector should be roughly aligned with the vehicle’s centerline to allow computation of heading and pitch, or roughly perpendicular to the vehicle’s centerline to allow computation of heading and roll.

 If you don’t follow these recommendations, no attitude solution will be delivered.

- Vector components should be expressed in the reference frame of the antenna setup. If you are using non-zero offset values, be aware these components will be different if expressed in the vehicle’s reference frame.

- This command will be ignored if calibration is in progress.
ALR,ACK: Acknowledging Alarms

Function
This command is used to acknowledge the alarms (alerts) raised by the receiver. When this command is issued, all the reported alarms are removed. Query command $PASHQ,ALR will then stop reporting any alarm until a new one is set.

Command Format
Syntax
$PASHS,ALR,ACK[*cc]

Parameters
None.

Example
Acknowledging all alarms:
$PASHS,ALR,ACK

Query Command
$PASHQ,ALR

ANH: Antenna Height

Function
This command allows you to enter the antenna height (vertical measurement only). See $PASHS,ANT for slant measurement.

Command Format
Syntax
- To define the height of the primary antenna (main antenna or antenna #1):
 $PASHS,1,ANH,f1[,c2][*cc]
- or you can simply skip the second term ("1"):
 $PASHS,ANH,f1[,c2][*cc]
- To define the height of antenna #2:
 $PASHS,2,ANH,f1[,c2][*cc]
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>f1</td>
<td>Antenna height.</td>
<td>0-6.553 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.553-99.999 m</td>
</tr>
<tr>
<td>c2</td>
<td>Antenna height measurement type ("V" for Vertical)</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>c2 may be omitted. The entered value will always be seen as a vertical measurement</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Example

Entering the vertical measurement (2 m) of a rover antenna:

$PASHS,ANH,2.000

Comments

When you enter an antenna height greater than 6.553 m, be aware this will NOT be the value of antenna height broadcast through RTCM messages and the one saved to the G-file. Instead, a fixed value of 6.553 meters will be used.

Related Commands

$PASHQ,ANH (query command)
$PASHS,ANR
$PASHS,ANT

ANP,OUT: Defining a Virtual Antenna

Function

This command allows you to specify the name of an antenna that raw data will be adjusted to. By specifying the name of a virtual antenna, you ask the receiver to correct ("reduce") the raw and differential data it generates from the received GNSS signals to make them available as if they had been received through that antenna.

Command Format Syntax

$PASHS,ANP,OUT,s1[*cc]
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Virtual antenna name (case-sensitive)</td>
<td>31 characters max., blank or OFF</td>
</tr>
<tr>
<td>cc</td>
<td>Optional checksum</td>
<td>00-FF</td>
</tr>
</tbody>
</table>

Examples

Setting the ADVNULLANTENNA as the virtual antenna:

```
$PASHS,ANP,OUT,ADVNULLANTENNA*73
```

Disabling the use of a virtual antenna:

```
$PASHS,ANP,OUT,OFF*2B
```

Comments

- By default, the receiver observables are not corrected for the type of GNSS antenna used. It’s only by providing separately the name of the GNSS antenna used (declared as the OWN antenna) that the antenna corrections can be performed when processing the receiver observables. Now precisely, the ANP,OUT command allows you to directly generate the raw and differential observables for the type of antenna you specify in the command (e.g. ADVNULLANTENNA).
- Be aware that the raw data reduction process is possible only if the name of the antenna physically used by the receiver has been specified through the $PASHS,ANP,OWN command and declared in the receiver’s antenna database as one of the default or user-defined antennas. Otherwise, the command will be NAKed.
- Raw data reduction will not be performed on data from any satellite located below the elevation mask.
- When raw data reduction is effective, any antenna name messages generated by the receiver will include the name of the virtual antenna, and not the antenna serial number or the setup ID.
- Antenna reduction is performed in such a way that the ARP is unchanged. If the reference position is given with respect to the ARP, and not to the L1 phase center, then the receiver computes the position of the ARP using the physical parameters of the antenna, and then re-computes the position of the L1 phase center according to the ANP,OUT antenna parameters. This guarantees that the reported reference position, the antenna name and the observables are all consistent with one another.
• With a dual sensor (see $PASHS,SNS,DUO), the command will affect the two antennas, provided each of them has a known physical name, otherwise the command is NAKed.

Related Commands
- $PASHQ,ANP - $PASHQ,ANP,OUT (query commands)
- $PASHS,ANP,OWN

ANP,OWN: Naming Local Antennas

Function

This command is used to enter the names of the antennas connected to the receiver (local antennas).

Command Format

Syntax

Naming local antenna #1 (main antenna):

- `$PASHS,1,ANP,OWN,s1[,s2[,d3]][*cc]`
- or
- `$PASHS,1,ANP,OWN,s1,,d3[*cc]`
- or
- `$PASHS,ANP,OWN,s1[,s2[,d3]][*cc]`
- or
- `$PASHS,ANP,OWN,s1,,d3[*cc]`

Naming local antenna #2:

- `$PASHS,2,ANP,OWN,s1[,s2[,d3]][*cc]`
- or
- `$PASHS,2,ANP,OWN,s1,,d3[*cc]`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>User-defined antenna name (case-sensitive). There is no default name (s1 empty). The command will be "NAKed" if s1 consists of more than 31 characters.</td>
<td>31 characters max.</td>
</tr>
<tr>
<td>s2</td>
<td>Antenna serial number</td>
<td>31 characters max.</td>
</tr>
<tr>
<td>d3</td>
<td>Antenna setup ID</td>
<td>0-255</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Comments

- Antenna names must be chosen to be consistent with the built-in antenna database, which is a hard-coded database. The firmware has the capability to extract
numerical values from the parameters entered under a given antenna name.

- The active antenna input (whether antenna connector 1 or antenna connector 2) can be specified externally, or detected automatically. In both cases, the firmware is informed of the antenna input providing the GNSS signal and, as a result, of the name of the antenna providing the signal.
- Parameters s2 and d3 have little interest for a rover (that’s why they are optional). If however they are specified, they should be inserted in such RTCM messages as type 1008 or 1033, in which room is reserved for these parameters.
- With the receiver used as an RTK base, the s1 parameter (and also the s2 and d3 parameters if available) are inserted into antenna name messages (e.g. RTCM 23 or RTCM 1007, 1008 or 1033). If needed, the receiver performs the transformation of the entered base position from ARP to APC, or vice versa.
- With the receiver used as an RTK rover, the numerical values corresponding to the s1 parameter are used to appropriately correct the local antenna data.

Example
Entering “ASH111661” as the name of the receiver antenna:

$PASHS,ANP,OWN,ASH111661*26

ANP,REF: Naming the Antenna Used at the Base

Function
This command is used to enter the name of the antenna used by the base the receiver is working with. Using this command only makes sense to name the antenna of the base defined as the base data source for the first baseline (i.e. as defined using $PASHS,1,BLN,...).

Command Format

```plaintext
$PASHS,ANP,REF,s1[*cc]
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>User-defined antenna name (case-sensitive).</td>
<td>31 characters max.</td>
<td>UNKNOWN</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
<td></td>
</tr>
</tbody>
</table>

Comments

- The antenna name you enter through this command should be strictly the same as the one specified in the receiver built-in, hard-coded antenna database, otherwise the receiver won’t be able to make the appropriate processing relative to this antenna.
- When used as a rover, the receiver will correct the received reference data, using the physical parameters saved for the antenna whose name was entered through this command.
- The s1 parameter will be ignored if the incoming reference data include the name of the base antenna used (even if this name is unknown or a blank field).

Example

Entering “ASH802147” as the name of the base antenna:
$PASHS,ANP,REF,ASH802147

Related Commands

$PASHQ,ANP,REF (query command)
$PASHQ,ANP

ANR: Antenna Reduction Mode

Function
This command is used to define the exact location for which the receiver (a base or rover) computes a position (your choice applies to both antennas, if your application uses two).

Command Format

Syntax

$PASHS,ANR,s1[*cc]
Set Command Library

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Antenna reduction mode:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• OFF or PC1: Position tagged to the L1 phase center.</td>
<td>OFF, PC1, ON, SPT, ARP</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>• ON or SPT: Position tagged to the survey point (ground mark).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ARP: Position tagged to the Antenna Reference Point.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
<td></td>
</tr>
</tbody>
</table>

Example

Setting the antenna reduction mode to ARP:

\$PASHS,ANR,ARP*47

Comments

- Internally, the receiver will always compute a position tagged to the antenna’s L1 phase center (PC1). Using this command, you may ask the firmware to make the necessary transformation so that the position delivered be tagged to another point:
 - The transformation from PC1 to ARP or ARP to PC1 relies on the parameters entered through the \$PASHS,ANP,OWN command.
 - The transformation from ARP to SPT or SPT to ARP relies on the parameters entered through the \$PASHS,ANT/ANH command.

Changes made “on-line” using the \$PASHS,ANP,OWN or \$PASHS,ANT/ANH commands will cause the position delivered to leap.

- The messages that are affected by this command are the following:
 - All NMEA messages
 - All NMEA-like messages
 - ATOM,PVT message. The MIS block in the ATOM,PVT message will tell you the exact location the position is tagged to.

- The messages that are NOT affected by this command are the following:
 - ATM,RNX
 - All RTCM-2 position messages
 - All RTCM-3 position messages
 - CMR and CMR+ messages
• Changing the antenna reduction mode setting (s1) “on-line” will NOT reset the PVT engine. You should therefore be aware that in this case, the position will jump noticeably, and most notably the altitude, which may jump by as much as a few meters.

Related Commands

- $PASHQ,ANR (query command)
- $PASHS,ANH
- $PASHS,ANT

ANT: Antenna Height

Function

This command is used to define the antenna height, especially when it was determined using the slant measurement method. However, a vertical measurement can also be entered through this command.

Using the $PASHS,ANT command overwrites all previous settings performed with the $PASHS,ANH command.

Command Format

Syntax

To define the height of antenna #1 (main, or primary, antenna):

$PASHS,ANT,1,f1,f2,f3[*cc]

or

$PASHS,ANT,f1,f2,f3[*cc]

To define the height of antenna #2:

$PASHS,ANT,2,f1,f2,f3[*cc]

Diagrams and Definitions

![Diagram of Slant and Vertical Measurement](image-url)
• ARP: Antenna Reference Point (usually bottom of the antenna).
• SHMP: Slant Height Measurement Point (usually at the hedge of the antenna, above the ARP).
• Ground Mark (GM): above the ARP (same horizontal coordinates).

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>f1</td>
<td>Slant height measurement, from ground mark (GM) to antenna edge (SHMP).</td>
<td>0-6.553 m 6.553-99.999 m</td>
</tr>
<tr>
<td>f2</td>
<td>Antenna radius: horizontal distance from the geometrical center to the antenna edge.</td>
<td>0-6.553 m</td>
</tr>
</tbody>
</table>
| f3 | Vertical offset:
 • From ARP to SHMP, if radius and slant height are not null.
 • From Ground Mark to ARP, if radius and slant height are null. | 0 to ±6.553 m 6.553-99.999 m |
| *cc | Optional checksum | *00-*FF |

Examples

Entering the vertical measurement (2 m) (antenna #1):

```
$PASHS,ANT,0,0,2.000*2E
```

Entering a slant measurement (1.543 m) (antenna #1):

```
$PASHS,ANT,1.543,0.0980,-0.0400*07
```

Comments

- When you enter an antenna height greater than 6.553 m (see f1 and f2 above), be aware this will NOT be the value of antenna height broadcast through RTCM messages and the one saved to the G-file. Instead, a fixed value of 6.553 meters will be provided.
- The vertical height from ARP to ground mark can also be entered through the ANT command, which in this case should be used as follows:
 - Set f1 and f2 to “0.0”
 - Enter the antenna height from ARP to ground mark as f3. Only when f1=f2=0.0 can you define f3 this way.
 - f3 is negative when the ARP is below the SHMP.

Related Commands

$PASHQ,ANT (query command)
$PASHS,ANH
$PASHS,ANR
ATH,PWD: Defining the Startup Password

Function
This command is used to define the startup password.

Command Format
Syntax
$PASHS,ATH,PWD,s[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>Password</td>
<td>'empty'</td>
<td>6 to 64 characters. The following characters are allowed: A-Z, a-z, 0-9</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td></td>
<td>00-FF</td>
</tr>
</tbody>
</table>

Example
Entering new startup password “Theft125”:
$PASHS,ATH,PWD,Theft125

Related Commands
$PASHQ,ATH (query command)

ATL: Debug Messages

Function
This command allows you to:
- Enable or disable the recording of ATL data. ATL data are written to a file named ATL_<yymmdd_hhmmss>.log. The file is saved to the memory you last selected through the $PASHS,MEM command.
- Output ATL data via the specified port.

Command Format
Syntax
Enabling/disabling ATL data recording:
$PASHS,ATL,s1[f3][,SCN,d4][,MEM,d5][,MDR,d6][*cc]

Sending ATL data through a port:
$PASHS,ATL,d2[f3][,SCN,d4][*cc]
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
</table>
| s1 | Enabling/disabling ATL data recording:
• ON: Enable (recording does not restart after power cycle)
• AUT: Enable (record will restart automatically after power cycle)
• OFF: Disable | ON, AUT, OFF | OFF |
| d2 | Output port:
• Serial port (A, B, D)
• USB serial port (C)
• TCP/IP port (I, F) | A-D, I, F |
| f3 | Output interval, in seconds | 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1 | 1 |
| d4 | Configuration index | 0, 1 | 0 |
| d5 | Memory where ATL data are recorded:
• 0: Internal memory
• 1: SD Card
• 2: USB memory
If this parameter is not specified, ATL data are recorded in the memory specified by $PASHS,MEM. | 0-2 | 0 |
| d6 | Maximum duration, in minutes (0: unlimited) | 0, 15, 20, 30, n x 60 with n between 1 and 24 | 0 |
| ccc | Optional checksum | *00–*FF |

Examples
Recording ATL data to memory is only possible if the [R] firmware option is installed.
First choose the memory [internal memory (0) or USB memory (2)] where to save ATL data (e.g. to USB memory):
$PASHS,MEM,2
Then enable ATL data recording to the chosen memory:
$PASHS,ATL,ON
ATL data can be output independently via a port through the following command (e.g. ATL data output on port C):
$PASHS,ATL,C

Comments
• The command (first syntax) will be ACKed even in the case where the selected memory is unavailable at the time of request. Please use $PASHQ,ATL to read the ATL data status in that case.
• The command (first syntax) will be NAKed if you are trying to record ATL data while these are being sent to a port.
• Conversely, the command (second syntax) will be NAKed if you are trying to output ATL data through a port while ATL data are being written to memory.
• You may customize ATL data recording when setting it to ON or AUT. If a file named “atl.ini” is found on the SD card, then the receiver will run the commands found in this file rather than running the default recording command. Please note that the last command in the “atl.ini” file should be followed by the <cr><lf> characters to be seen as valid.
• You don’t normally have to use this command but Technical Support may ask you to do so if a problem occurs and they need to analyze the resulting log file to fix the problem. The content of the file can only be analyzed by Technical Support as ATL data files use a proprietary, undisclosed data format, which in addition is subject to change without notice.

Related Commands
$PASHQ,ATL (query command)
$PASHS,MEM

ATM: Enabling/Disabling ATOM Messages

Function
This command allows you to enable or disable ATOM messages on the specified port. For more details about the ATOM format, please refer to the ATOM Reference Manual.

Command Format
Syntax
$PASHS[d0],ATM,s1,c2,s3[,f4]["cc]
$PASHS[d0],ATM,RNX,c2,s3[,f4],&SCN,d5
$PASHS[d0],ATM,s1,c2,s3[,f4],&s7[,s8,]...
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d0</td>
<td>Sensor ID (antenna ID; 1: primary, 2: secondary; 1 if omitted)</td>
<td>1, 2</td>
</tr>
<tr>
<td>s1</td>
<td>ATOM message type</td>
<td>See table below</td>
</tr>
<tr>
<td>c2</td>
<td>Port ID: • A, B, D: Serial port • C: USB serial port • I, P, Q, F: TCP/IP stream • M: Internal memory • U: USB memory</td>
<td>A-D, F, I, P, Q, M, U</td>
</tr>
<tr>
<td>s3</td>
<td>Enable (ON) or disable (OFF) this ATOM message type.</td>
<td>ON, OFF</td>
</tr>
<tr>
<td>f4</td>
<td>Output rate for PVT, RNX and SUP messages, in seconds.</td>
<td>0.02, 0.05, 0.1, 0.2, 0.5, 1-6, 10, 12, 15, 20, 30, 60, 120, etc. integer minute, up to 960 seconds</td>
</tr>
<tr>
<td>d5</td>
<td>Scenario for ATOM RNX</td>
<td>See list of scenarios below</td>
</tr>
<tr>
<td>s7, s8, etc.</td>
<td>Sub-message</td>
<td>See ATOM Reference Manual</td>
</tr>
</tbody>
</table>

ATOM Messages (preliminary list)

<table>
<thead>
<tr>
<th>Data</th>
<th>ATOM Number</th>
<th>Description</th>
<th>Default Sub-messages</th>
<th>Default Output rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALR</td>
<td>0</td>
<td>Receiver alarms</td>
<td>USR</td>
<td>N/A</td>
</tr>
<tr>
<td>SUP</td>
<td>1</td>
<td>Supplementary data</td>
<td>CPI</td>
<td>1 second</td>
</tr>
<tr>
<td>PVT</td>
<td>3</td>
<td>Positioning results</td>
<td>COO, ERR, LCY, SVS</td>
<td>1 second</td>
</tr>
<tr>
<td>ATR</td>
<td>4</td>
<td>Receiver attributes</td>
<td>ANM, RNM, CPB, AOP</td>
<td>30 seconds</td>
</tr>
<tr>
<td>NAV</td>
<td>5</td>
<td>Navigation information</td>
<td>EPH, GIT, GFT</td>
<td>300 seconds</td>
</tr>
<tr>
<td>DAT</td>
<td>6</td>
<td>Binary data frames</td>
<td>EXT, FRM</td>
<td>N/A</td>
</tr>
<tr>
<td>RNX</td>
<td>7</td>
<td>Receiver observables</td>
<td>SCN, J</td>
<td>1 second</td>
</tr>
<tr>
<td>STA</td>
<td>13</td>
<td>Receiver status</td>
<td>BA, DDS, GPN</td>
<td>5 seconds</td>
</tr>
<tr>
<td>EVT</td>
<td>14</td>
<td>Receiver event</td>
<td>TTT, PTT</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Default Settings on Ports M and U for Raw Data Recording:

<table>
<thead>
<tr>
<th>Data</th>
<th>ATOM Number</th>
<th>Description</th>
<th>Default Sub-messages</th>
<th>Default Output rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVT</td>
<td>3</td>
<td>Positioning results</td>
<td>COO, ERR, LCY</td>
<td>1 second</td>
</tr>
<tr>
<td>ATR</td>
<td>4</td>
<td>Receiver attributes</td>
<td>ANM, RNM, AOP, CPB</td>
<td>30 seconds</td>
</tr>
</tbody>
</table>
Scenarios 1 to 300 are used as differential messages sent to ports A-D, F, I, P, Q. These are output only with the receiver used in base mode (not in rover mode). However, they can be sent to port M or U for data recording regardless of whether the receiver is used as a base or a rover.

Example

Enabling ATOM message type RNX on serial port A at a 1-second output rate:

```
$PASHS,ATM,RNX,A,ON,1.0,&SCN,0*4E
```
Related Commands

$PASHQ,PAR,ATM (query command)
$PASHS,ATM,ALL

ATM,ALL: Disabling All ATOM Messages

Function
This command disables all ATOM messages currently enabled on the specified port.

Command Format

Syntax
$PASHS(d0),ATM,ALL,c1,OFF[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d0</td>
<td>Sensor ID (antenna ID; 1: primary, 2: secondary); 1 if omitted.</td>
<td>1, 2</td>
</tr>
<tr>
<td>c1</td>
<td>Port routing the ATOM message(s) you want to disable. • A, B, D: Serial port • C: USB serial port • I, P, Q, F: TCP/IP stream • M: Internal memory • U: USB memory</td>
<td>A-D, F, I, P, Q, M, U</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>00-FF</td>
</tr>
</tbody>
</table>

Example
Disabling all ATOM messages on port A:

$PASHS,1,ATM,ALL,A,OFF*53

Related Commands

$PASHS,ATM

BDS: BeiDou Tracking

Function
This command is used to enable or disable BeiDou tracking. The command is valid only if the [B] option has been activated in the receiver.
Command Format

Syntax

$PASH5,BDS,s1[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Enables (ON) or disables (OFF) BeiDou tracking.</td>
<td>ON, OFF</td>
<td>ON</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
<td></td>
</tr>
</tbody>
</table>

Example

Enabling BeiDou:

$PASH5,BDS,ON

Related Commands

$PASHQ,BDS (Query command)

$PASH5,SBA

$PASH5,GPS

$PASH5,GAL

$PASH5,QZS

$PASH5,GLO
BLN: Defining Baselines and their Base/Rover Data Sources

Function
This command is used to define all the baselines that need to be processed in your application.
By default, a baseline that you define and enable is a primary baseline. If you create it that way, a baseline may also be a supplementary baseline, therefore coming as a “supplement”, or support, to a primary baseline.
Whatever their type (primary or supplementary), every baseline should be defined with a source of base data and a source of rover data.
A supplementary baseline uses the same sources of base/rover data as the primary baseline. Only its baseline number is different. It is created just for the sake of cross-checking its results with those of the primary baseline (which should be very similar in theory).
This command is also used to deactivate (disable) an existing baseline.

Command Format Syntax
General Case:
\$PASHS,d1,BLN,X,c2[,c3][*cc]
To define and enable baseline “d1”:
\$PASHS,d1,BLN,ON,c2[,c3][*cc]
To enable the one baseline (will necessarily be baseline #1) you are using in your application:
\$PASHS,BLN,ON,c2[,c3][*cc]
To disable a baseline (the corresponding baseline engine is stopped right away):
\$PASHS,d1,BLN,OFF[*cc]
To disable all baselines:
\$PASHS,,BLN,OFF[*cc]
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1,BLN</td>
<td>Baseline number. Particular cases of use: • d1 skipped: The command refers to baseline #1 • d1 empty: The command applies to all existing baselines</td>
<td>• 1,BLN or 2,BLN or 3,BLN • Skipped. • Empty</td>
</tr>
<tr>
<td>X</td>
<td>Baseline definition and processing control: • ON: Enables processing of considered baseline (as primary baseline). • OFF: Disables processing of considered baseline. • SAM: Defines considered baseline as supplementary and enables processing of this baseline.</td>
<td>ON, OFF, SAM</td>
</tr>
<tr>
<td>c2</td>
<td>Base data source: • A, B, C, etc.: A board’s physical or virtual port through which external data enter the board. • “?”: Automatic selection of the board’s physical port through which external data enter the board. • 1, 2, 3, etc.: Sensor internal to the board. The figure indicates the number of the sensor used. • A1, A2, B1, B2, etc.: Multi-board configuration. The letter indicates the local board’s port to which an external multi-antenna board is connected, and the figure indicates the number of the sensor (on that external board) that is the source of data to be processed. • ?1, ?2, etc.: Multi-board configuration. The “?” symbol indicates that there is an automatic selection of the local board’s physical port through which data enter the local board, and the figure indicates the number of the sensor (on the external board) that is the source of data to be processed.</td>
<td>• A, B, C, etc. • ? • 1, 2, 3, etc. • A1, A2, B1, B2, etc. • ?1, ?2, etc.</td>
</tr>
<tr>
<td>c3</td>
<td>Same as c2 above, but for rover data source.</td>
<td>Same as c2</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>00-FF</td>
</tr>
</tbody>
</table>

Comments
- You can define a maximum of three baselines.
- Baseline #1 can only be a primary baseline
The normal step before setting baselines is to configure your application using commands $PASHS,RTK (for RTK position), $PASHS,BRV (for baseline/vector) or $PASHS,3DF (for attitude).

This command does not support CMRx data sources (RTX correcting data, physical station data, VRS data). Conversely, any baseline engine set to process CMRx data cannot take part in an RTK, BRV or 3DF application.

Examples

Creating (primary) baseline #2 using port A as base data source and B as rover data source:

```
$PASHS,2,BLN,ON,A,B
```

Disabling all existing baselines:

```
$PASHS,BLN,OFF
```

BRD: Enabling/Disabling the RTK Bridge Function

Function
This command is used to control the RTK Bridge function. Its use is required only in a board in charge of forwarding its RTK corrections (received via modem or WiFi) to other nearby boards through a radio transmitter.

Command Format

```
$PASHS,BRD,s1[,c2][,c3]["cc"
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
</table>
| s1 | Controls the availability of RTK corrections on the specified output port:
 • OFF: No RTK corrections forwarded to the output port.
 • ON: RTK corrections forwarded to the output port. | ON, OFF | OFF |
| c2 | Input port ID (port on which RTK corrections are received):
 • Serial port: A, B, D
 • USB serial port: C
 • TCP/IP stream: P, Q | A, B, D, C, P, Q | P |
| c3 | Output port ID (port on which RTK corrections are made available):
 • Serial port: A, B, D
 • USB serial port: C | A, B, D, C | D |
| cc | Optional checksum | *00-*FF |

Examples

Enabling RTK Bridge with input port P and default output port D:

```
$PASHS,BRD,ON,P*70
```

Disabling RTK Bridge:

```
$PASHS,BRD,OFF*42
```

Relevant Query Command

```
$PASHQ,BRD
```

See also

- $PASHS,NTR
- $PASHS,DIP
- $PASHS,RDP,TYP
- $PASHS,RDP,PAR
- $PASHS,CPD,REM

BRV: Relative Processing

Function

This command is used to set up the relative mode in the board. Use this command typically when you want to determine the vector originating from a moving base. The command can also be used to stop this process.

When a baseline engine is included in a BRV process (“BRV” for Base-Rover Vector), it is assumed that the type of base it
is working from is a moving one. Each of the baselines included in a BRV process cannot be a source of position solution.

Command Format

Syntax

$PASHS,BRV,ON,d1[,d2[,d3]]["cc]$

$PASHS,BRV,OFF["cc]$

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>First baseline number</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>d2</td>
<td>Second baseline number</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>d3</td>
<td>Third baseline number</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>00-FF</td>
</tr>
</tbody>
</table>

Comments

To date, only the following combinations are supported:

- Vector computed by baseline engine 1 (baseline 1):
 $PASHS,BRV,ON,1$

- Vector computed by baseline engine 2 (baseline 2):
 $PASHS,BRV,ON,2$

- Vector computed by baseline engine 3 (baseline 3):
 $PASHS,BRV,ON,3$

BRV,RST: Resetting Relative Positioning Mode

Function

This command is used to reset the process taking place in all baseline engines delivering a solution of the BRV type. This command is also applicable to all baseline engines serving an application of the BRV type.

Command Format

Syntax

$PASHS,BRV,RST["cc]$

Parameters

None.

Comments

- This command does not apply to engines delivering solutions of the 3DF or RTK type.
Set Command Library

- Resetting baseline engines means resetting the current estimates of single-difference (SD) carrier ambiguities for all processed signals.
- Just after issuing this command, you should expect jumps on baseline estimation, increased baseline RMS and temporary float solution status.

CAN,OFF: Disabling the CAN Port

Function
This command is used to disable the CAN port. By default the CAN port is on.

Command Format
Syntax
$PASHS,CAN,OFF[*cc]

Parameters
None.

Example
Disabling the CAN port:
$PASHS,CAN,OFF

See also
$PASHQ,CAN (relevant query command)
$PASHS,CAN,ON
$PASHS,CAN,PAR

CAN,ON: Enabling the CAN Port

Function
This command is used to enable the CAN port. By default the CAN port is on.

Command Format
Syntax
$PASHS,CAN,ON[*cc]

Parameters
None.

Example
Enabling the CAN port:
CAN,PAR: Setting the CAN Parameters

Function
This command is used to define the parameters of the CAN bus. These are saved in permanent memory and so are not affected by commands $PASHS,RST and $PASHS,INI.

Command Format
Syntax
$PASHS,CAN,PAR[,BRT,d1][,FMT,d2][*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRT,d1</td>
<td>CAN bus bit rate (in kbits/second):</td>
<td>0-4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>• 0: 62.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1: 125</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2: 250</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 3: 500</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 4: 1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMT,d2</td>
<td>Data format:</td>
<td>0-1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>• 0: Raw data</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1: NMEA 2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>-00-FF</td>
<td></td>
</tr>
</tbody>
</table>

Example
Setting the CAN bus to use a bit rate of 500 kbits/s and handle NMEA 2000 data:
$PASHS,CAN,PAR,BRT,3,FMT,1

See also
$PASHQ,CAN (relevant query command)
$PASHS,CAN,ON
$PASHS,CAN,OFF
CMD,LOD: Running a List of $PASH Commands

Function
This command is used to run the complete list of $PASH commands stored in a file found on USB memory. This implies that the file (in text editable format) should have first been saved to that medium.

Command Format

Syntax

```
$PASHS,CMD,LOD[s][*cc]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>File name. If s is omitted, it is assumed that the file to be run is "autoconfig.cmd".</td>
<td>255 characters max.</td>
<td>autoconfig.cmd</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
<td></td>
</tr>
</tbody>
</table>

Examples

Running the serial commands in autoconfig.cmd:

```
$PASHS,CMD,LOD*54
```

Running the serial commands in a file named "myconfig.cmd":

```
$PASHS,CMD,LOD,myconfig.cmd*02
```

Example of log file:

```
314 09:11:07 > $PASHQ,RID
314 09:11:07 < $PASHR,RID,PF,30,5525Gh23,FKSZP----,200913024*37
314 09:11:07 > $PASHQ,POS
314 09:11:07 < $PASHR,POS,1,14,091107.80,4717.938167,N,00130.543280,W,86.457,3,0,0.0,-0.0,1.2,0.8,0.9,0.6,Gh23*20
314 09:11:07 > $PASHS,NME,GGA,A,ON
314 09:11:07 < $PASHR,ACK*3D
```

Comments

- The file may contain any $PASHS or $PASHQ commands.
- If the file contains the $PASHS,REC or $PASHS,INI command, this command will always be run last, whatever its position in the file.
- All data lines returned by the receiver in response to the executed commands are written to a log file named as follows:

 `<command_file_name>.log`
To insert an idle wait time of several seconds between any two $PASH commands, you can insert a specific command named $PASHS,CMD,WTI between these two commands. The $PASHS,CMD,WTI command may be inserted as many times as necessary in the file.

Naming the command file “autoconfig.cmd” or “uploadconfig.cmd” will allow the receiver to automatically start the execution of all the commands stored in the file once it is detected by the receiver. The difference between the two file names is in the need for a user confirmation before running the file: “autoconfig.cmd” will require one, not “uploadconfig.cmd”.

Related Commands

$PASHS,CMD,WTI

CMD,WTI: Inserting Wait Times

Function

This command can be inserted one or more times in the list of $PASH commands run with the CMD,LOD command. When running this command, in fact the receiver inserts a wait time of the requested value in the execution of the $PASH commands.

Command Format

Syntax

$PASHS,CMD,WTI,d[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>Wait time generated by the command, in seconds</td>
<td>1-3600</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Example

The command line below inserted in a command file will generate a 10-s wait time when executed:

$PASHS,CMD,WTI,10*74

Comments

This command will be interpreted by the receiver only if found in a command file.
Related Commands

$PASHS,CMD,LOD

CMR: Enabling/Disabling CMR or CMR+ Messages

Function

This command is used to enable or disable the continuous output of CMR/CMR+ messages on the specified port.

Command Format

Syntax

$PASHS,CMR,d1,c2,s3,f4][*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Data message</td>
<td>See table below</td>
<td>-</td>
</tr>
<tr>
<td>c2</td>
<td>Port ID:</td>
<td>A-D, F, I, P, Q</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>• A, B, D: Serial port</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• C: USB serial port</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• I, P, Q, F: TCP/IP stream</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s3</td>
<td>Enabling/disabling command</td>
<td>ON, OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>f4</td>
<td>Output interval, in seconds</td>
<td>See table below</td>
<td>-</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>00~FF</td>
<td>-</td>
</tr>
</tbody>
</table>

The list of supported data messages is the following:

<table>
<thead>
<tr>
<th>Data</th>
<th>Description</th>
<th>f4 Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>GPS observations</td>
<td>0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60, 120, etc. integer minutes, up to 960.</td>
</tr>
<tr>
<td>1</td>
<td>Reference WGS84 position (location) tagged to L1 phase center</td>
<td>0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, etc. integer seconds, up to 999,</td>
</tr>
<tr>
<td>2</td>
<td>Reference site description (as entered through $PASHS,MSG)</td>
<td>0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, etc. integer seconds, up to 999,</td>
</tr>
<tr>
<td>3</td>
<td>GLONASS observations</td>
<td>0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60, 120, etc. integer minutes, up to 960.</td>
</tr>
</tbody>
</table>
Example

Setting default CMR messages at a base:

$PASHS,POS,<coordinates of position>

or

$PASHS,POS,CUR*51

$PASHS,CMR,0,A,ON,1*68
$PASHS,CMR,1,A,ON,13*5A
$PASHS,CMR,2,A,ON,31*59
$PASHS,CMR,3,A,ON,1*6B

Setting default CMR+ messages at a base:

$PASHS,POS,'position'*cc

or

$PASHS,POS,CUR*51

$PASHS,CMR,10,A,ON*68
$PASHS,CMR,3,A,ON,1*6B

CMR,ALL: Disabling All CMR or CMR+ Messages

Function

This command is used to disable all the CMR or CMR+ messages currently enabled on the specified port.

Command Format Syntax

$PASHS,CMR,ALL,c1,OFF[*cc]
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>Port ID:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• A, B, D: Serial port</td>
<td>A-D, F, I, P, Q</td>
</tr>
<tr>
<td></td>
<td>• C: USB serial port</td>
<td>A-D, F, I, P, Q</td>
</tr>
<tr>
<td></td>
<td>• I, P, Q, F: TCP/IP stream</td>
<td>A-D, F, I, P, Q</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>00-FF</td>
</tr>
</tbody>
</table>

Example

Disabling all CMR messages on port A:

```
$PASHS,CMR,ALL,A,OFF*4A
```

Related Commands

$PASHS,CMR

COO,REF: Entering a Reference Position Manually in a Rover

Function

This command is useful when some providers deliver corrections streams without including the reference position whereas that position is usually known and can be found on provider’s websites.

So this command is used at a rover, to enter the reference position of the base the rover is working with. It allows the rover to process reference data without having the reference position included in these data. If the reference data contains the required reference position, then the position you entered through COO,REF may be ignored or used, depending on the preference rule you set with this command.

This command only makes sense to enter the reference position of the base defined as the base data source for the first baseline (i.e. as defined using $PASHS,1,BLN,...).

Command Format

Syntax

```
$PASHS,COO,REF,f1,f2,f3[,d4][*cc]
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>X cartesian coordinate of base, in meters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>Y cartesian coordinate of base, in meters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>Z cartesian coordinate of base, in meters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d4</td>
<td>Preference rule:</td>
<td>0, 1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>• 0: Incoming position is preferred</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1: Always ignore incoming position</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>^00^-FF</td>
<td></td>
</tr>
</tbody>
</table>

Example

Entering a reference position:

$PASHS,COO,REF,2352345.2800,2717465.7080,5251459.2240

Comments

• It is the user’s responsibility to provide the coordinates in the appropriate datum and for the appropriate point. The entered position is assumed to be that of the PC1 point on the reference antenna and its coordinates are expressed in the datum last selected through $PASHS,PGS.

• If a new message is received containing the reference position, this position overwrites the point you last entered through $PASHS,COO,REF.

CST,ON: Starting the Embedded NTRIP Caster

Function

This command is used to launch the embedded NTRIP caster in the receiver. By default, the embedded NTRIP caster is off and cannot be started until a password is defined (by default the password field is empty).

Command Format Syntax

$PASHS,CST,ON[*cc]

Parameters

None.

Example

Starting the embedded NTRIP caster:

$PASHS,CST,ON*1C
CST,OFF: Stopping the Embedded NTRIP Caster

Function
This command is used to ask the receiver to stop running the embedded NTRIP caster. By default, the embedded NTRIP caster is off.

Command Format

Syntax
$PASHS,CST,OFF[*cc]

Parameters
None.

Example
Stopping the embedded NTRIP caster:
$PASHS,CST,OFF*52

CST,MTP,ADD: Adding/Modifying Mount Points

Function
This command is used to add or modify a mount point in the embedded NTRIP caster. All the information you enter with this command is made available to users through the source table.

Warning! Make sure the command does not exceed 349 characters in length before sending it to the receiver.
Command Format Syntax

\$PASHS,CST,MTP,ADD,s1,[s2,s3,s4,s5,f6,f7,s8][\{'cc\}]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Mount point name. An abbreviated name is recommended (no space character allowed). The identifier field (s3) may be used to enter a more detailed definition of the mount point name.</td>
<td>100 characters max.</td>
<td>-</td>
</tr>
<tr>
<td>s2</td>
<td>Mount point identifier</td>
<td>100 characters max.</td>
<td>-</td>
</tr>
<tr>
<td>s3</td>
<td>Format of the data available through the mount point (ATOM, RTCM, etc.)</td>
<td>100 characters max.</td>
<td>-</td>
</tr>
<tr>
<td>s4</td>
<td>Details of the data format (message types, etc.). Comma symbols may be entered as delimiters provided quotation marks are used to encompass the whole string (see example below). The semicolon character is not allowed in the string.</td>
<td>100 characters max.</td>
<td>-</td>
</tr>
<tr>
<td>s5</td>
<td>Country code.</td>
<td>3 characters</td>
<td>FRA</td>
</tr>
<tr>
<td>f6</td>
<td>Latitude, in degrees, with two decimal places.</td>
<td>±90.00</td>
<td>0.00</td>
</tr>
<tr>
<td>f7</td>
<td>Longitude, in degrees, with two decimal places.</td>
<td>±180.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
| s8 | Fee indicator:
 • Y: Use of the mount point is subject to a fee.
 • N: Use of the mount point is free. | Y, N | N |
| ccc | Optional checksum | *00-*FF | - |

Example

Creating the "NAN2" mount point for an NTRIP server delivering RTCM3.0 data, messages 1014 and 1012:

\$PASHS,CST,MTP,ADD,NAN2,Nantes LF2,RTCMV3.0,"1004(1s), 1012(1s), 1006(13s)",FRA,47.17,1.00,N*7A

Relevant Query Command

\$PASHQ,PAR,CST

See Also

\$PASHS,CST,PAR
\$PASHS,CST
\$PASHS,CST,MTP,DEL
CST,MTP,DEL: Deleting a Mount Point

Function
This command is used to delete a mount point from the embedded NTRIP caster source table.

Command Format Syntax
$PASHS,CST,MTP,DEL,s1[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Name of the mount point you want to delete.</td>
<td>100 characters max.</td>
<td>-</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
<td></td>
</tr>
</tbody>
</table>

Example
Deleting the “NAN2” mount point:
$PASHS,CST,MTP,DEL,NAN2*6A

Relevant Query Command
$PASHQ,PAR,CST

See Also
$PASHS,CST,PAR
$PASHS,CST,MTP,ADD

CST,PAR: Embedded NTRIP Caster Parameters

Function
This command is used to define the parameters of the embedded NTRIP caster. All these parameters will appear in the NTRIP caster source table.

Warning! Make sure the command does not exceed 349 characters in length before sending it to the receiver.

Command Format Syntax
$PASHS,CST,PAR,d1,s2,s3,d4,s5,s6,s7,f8,f9,s10,d11,s12,s13,c14[,s15, s16,s17][*cc]

178
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>IP port number of the NTRIP caster</td>
<td>100-65535</td>
<td>2101</td>
</tr>
<tr>
<td>s2</td>
<td>Host domain name or IP address of the NTRIP caster. By default, the address of the NTRIP caster is the receiver’s IP address. In this case, s2 does not need to be specified. If another IP address is used, please mention it as s2.</td>
<td>128 characters max.</td>
<td>x.x.x.x</td>
</tr>
<tr>
<td>s3</td>
<td>NTRIP caster password. This password is used by NTRIP servers (data sources) to connect to the NTRIP caster.</td>
<td>32 characters max.</td>
<td></td>
</tr>
<tr>
<td>d4</td>
<td>Number of simultaneous connections per user.</td>
<td>1-100</td>
<td>1</td>
</tr>
<tr>
<td>s5</td>
<td>NTRIP caster identifier. Use this field to provide more information describing/identifying the NTRIP caster.</td>
<td>100 characters max.</td>
<td></td>
</tr>
<tr>
<td>s6</td>
<td>NTRIP caster operator: Name of the institution, agency or company running the caster.</td>
<td>100 characters max.</td>
<td>Ashtech</td>
</tr>
<tr>
<td>s7</td>
<td>Country code</td>
<td>3 characters</td>
<td>PRA</td>
</tr>
<tr>
<td>f8</td>
<td>Latitude, in degrees with two decimal places.</td>
<td>±90.00</td>
<td>0.00</td>
</tr>
<tr>
<td>f9</td>
<td>Longitude, in degrees with two decimal places.</td>
<td>0.00 to 369.99</td>
<td>0.00</td>
</tr>
<tr>
<td>s10</td>
<td>Fallback caster IP address. (Fallback caster: the caster where to connect to in case this one breaks down).</td>
<td>128 characters max.</td>
<td>0.0.0.0</td>
</tr>
<tr>
<td>d11</td>
<td>Fallback caster IP port number</td>
<td>0, 100-65535</td>
<td>0</td>
</tr>
<tr>
<td>s12</td>
<td>Network identifier, e.g. name of a network of GNSS permanent stations.</td>
<td>100 characters max.</td>
<td></td>
</tr>
<tr>
<td>s13</td>
<td>Network operator: Name of the institution, agency or company running the network.</td>
<td>100 characters max.</td>
<td></td>
</tr>
<tr>
<td>c14</td>
<td>Fee indicator: • Y: Usage is charged • N: No user fee</td>
<td>Y, N</td>
<td>N</td>
</tr>
<tr>
<td>s15</td>
<td>Web address where network information can be found.</td>
<td>100 characters max.</td>
<td></td>
</tr>
<tr>
<td>s16</td>
<td>Web address where data stream information can be found.</td>
<td>100 characters max.</td>
<td></td>
</tr>
<tr>
<td>s17</td>
<td>Web or email address where registration information can be found.</td>
<td>100 characters max.</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>'00-FF</td>
<td></td>
</tr>
</tbody>
</table>
Example
Entering parameters defining the embedded NTRIP caster:
$PASHS,CST,PAR,2102,83.165.25.14,password,10,
NTRIP Caster MB-Two,Trimble,FRA,47.10,-1.00,123.12.132.12,2101,
mb-two@trimble.com

Related Commands
$PASHQ,CST (query command)
$PASHQ,PAR
$PASHS,CST,ON
$PASHS,CST,OFF
$PASHS,CST,USR,ADD
$PASHS,CST,USR,DEL
$PASHS,CST,MTP,ADD
$PASHS,CST,MTP,DEL

CST,RST: Resetting the Embedded NTRIP Caster

Function
This command is used to reset the embedded NTRIP caster in the receiver.
Resetting the caster means deleting all existing mount points and users and setting the caster definition to its default values.

Command Format Syntax
$PASHS,CST,RST[*cc]

Parameters
None.

Example
Resetting the embedded NTRIP caster:
$PASHS,CST,RST*48

Related Commands
$PASHS,CST,PAR
CST,USR,ADD: Adding/Modifying NTRIP Caster Users

Function
This command is used to add or modify a user allowed to connect the embedded NTRIP caster. Up to 100 users may be defined.

Command Format Syntax
$PASHS,CST,USR,ADD,s1,s2,s3[,s4,s5,s6,s7,s8,s9,s10,s11,s12,s13][*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Name of the new user (case sensitive).</td>
<td>32 characters max.</td>
<td>-</td>
</tr>
<tr>
<td>s2</td>
<td>User password</td>
<td>32 characters max.</td>
<td>-</td>
</tr>
</tbody>
</table>
| s3 | Indicator for user-authorized mount points:
- ALL: all existing mount points can be accessed by the user.
- SEL: Only the listed mount points (see s4,...,s13 below) can be accessed by the user. | ALL, SEL | ALL |
| s4,...,s13| List of existing mount points the user is allowed to connect to. Mount point name 1, up to mount point name 10 | 100 characters max. (each) | - |
| *cc | Optional checksum | 00-*FF | |

Examples
Entering a user named “Ashtech” allowed to connect to all the existing mount points managed by the embedded NTRIP caster:

$PASHS,CST,USR,ADD,Ashtech,password,ALL*16

Modifying the “Ashtech” user so it is only allowed to use only two of the existing mount points:

$PASHS,CST,USR,ADD,Ashtech,password,SEL,NAN1,NAN2*0E

Comments
- If a user is created with no mount point associated to it, then this user is allowed to connect to all existing mount points.
- If a mount point is created with no user associated to it, then the mount point is accessible to all users (not a protected mount point).
Set Command Library

Related Commands

- $PASHQ,PAR,CST (query command)
- $PASHS,CST,PAR
- $PASHS,CST,USR,DEL

CST,USR,DEL: Deleting an NTRIP Caster User

Function

This command is used to delete a user declared as an NTRIP Caster user.

Command Format Syntax

$PASHS,CST,USR,DEL,s1[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Name of the user you want to delete.</td>
<td>32 characters max.</td>
<td>-</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>00-FF</td>
<td></td>
</tr>
</tbody>
</table>

Example

Deleting the “Ashtech” user:

$PASHS,CST,USR,DEL,Ashtech*44

Related Commands

- $PASHQ,PAR,CST (query command)
- $PASHS,CST,PAR
- $PASHS,CST,USR,ADD

DFC,DEL: Deleting Default Configuration File

Function

This command is used to delete the default configuration file (`default_config.cmd` file).

Command Format Syntax

$PASHS,DFC,DEL[*cc]

182
DFC,GET: Duplicating the Default Configuration File

Function
This command is used to duplicate the default configuration file (default_config.cmd) currently used in the board. The resulting file is saved to the specified memory under the specified name (default name: default_config.cmd).

Command Format
$PASHS,DFC,GET,d1[,s2][*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Storage medium where to save the file: 0: Internal memory. 2: USB memory</td>
<td>0, 2</td>
<td>0</td>
</tr>
<tr>
<td>s2</td>
<td>File name (*.cmd) default_config.cmd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum *00-*FF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example
Duplicating the default configuration file as file “myconfig.cmd” saved to the USB memory:
$PASHS,DFC,GET,2,myconfig.cmd*26

Comments
If the default_config.cmd file does not exist in the board, then the created file is empty.

See also
$PASHQ,DFC (relevant query command)
$PASHS,RST
$PASHS,INI
$PASHS,DFC,SEL
$PASHS,DFC,GET
$PASHS,DFC,TST
DFC,SET: Setting the Default Configuration File

Function
This command is used so that the specified configuration file found on the specified memory becomes the board’s new default configuration file.

Command Format
Syntax
$PASHS,DFC,SET,d1,s2[^cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Storage medium where to find the configuration file:</td>
<td>0, 2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>• 0: Internal memory.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2: USB memory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s2</td>
<td>File name (*.cmd)</td>
<td></td>
<td>default_config.cmd</td>
</tr>
<tr>
<td>^cc</td>
<td>Optional checksum</td>
<td></td>
<td>^00^-FF</td>
</tr>
</tbody>
</table>

Example
Making the “myconfig.cmd” file found on the USB memory the board’s new default configuration file:
$PASHS,DFC,SET,2,myconfig.cmd*32

Comments
• The specified file is copied to a partition in the internal memory. The copy is renamed “default_config.cmd”.
• The default configuration file should only contain one comment line (starting with #) and $PASHS commands. All other lines will be ignored. The first line must be a comment with a title. Below is an example of default configuration file:
 # Default configuration for my company – Created on June 27, 2016
 $PASHS,ELM,10
 $PASHS,NME,GGA,A,ON,1
 $PASHS,NME,GSV,A,ON,5

See also
$PASHQ,DFC (relevant query command)
$PASHS,RST
DFC,TST: Testing the Default Configuration File

Function
This command is used to test the default configuration file. All commands found in the file are run in succession. The `default_config.log` file is created on the specified storage medium collecting all the responses to these commands.

Command Format Syntax
$PASHS,DFC,TST[,<d1>][*<cc>]$

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td><d1></td>
<td>Storage medium where to save the log file:</td>
<td>0, 2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>• 0: Internal memory.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2: USB memory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*<cc></td>
<td>Optional checksum *00-*FF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See also
$PASHQ,DFC$ (relevant query command)
$PASHS,RST$
$PASHS,INI$
$PASHS,DFC,DEL$
$PASHS,DFC,GET$
$PASHS,DFC,TST$

DDN,PAR: Setting the DynDNS Service

Function
This command is used to activate or deactivate a connection to a service ensuring that the receiver hostname will always be associated with the dynamic IP address your Internet Service Provider has last assigned to the receiver.
The successful use of the service requires that you first open an account on this service.

Command Format

Syntax

\$PASHS,DDN,PAR[,DYN,d1][,SYS,s2][,USR,s3][,PWD,s4][,HNM,s5][,PER,d6]*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
</table>
| DYN,d1 | Enabling/disabling the use of the service:
• 0: Enable
• 1: Disable | 0, 1 | 0 |
| SYS,s2 | Address of the service used. 100 characters max. | dyndns@dyndns.org |
| USR,s3 | Username you chose when creating your personal account on the DynDNS web site. 32 characters max. | - |
| PWD,s4 | Password you chose when creating your personal account on the DynDNS web site. 32 characters max. | - |
| HNM,s5 | Hostname you declared on the DynDNS web site for the receiver. 100 characters max. | - |
| PER,d6 | Update rate, in seconds 60-3600 | 600 |
| *cc | Optional checksum | *00-*FF |

Example

Enabling the use of the DynDNS service, for a receiver accessible through hostname “ashtech1”:

\$PASHS,DDN,PAR,DYN,1,SYS,dyndns@dyndns.org,USR,psmith,PWD,ashtech,HNM,ashtech1.dyndns.org,PER,600*0C

Comment

- After running this command with d1=1 to enable the service, the receiver will try to connect to the service. If the connection is successful, the receiver will return \$PASHR,DDN,OK. If it fails, the receiver will return \$PASHR,DDN,FAIL, causing d1 to be reset to “0”.
- Running commands \$PASHS,RST and \$PASHS,INI will reset d1 to 0 but will keep all other parameters unchanged.

Related Commands

\$PASHQ,PAR
\$PASHQ,DDN
DDN,SET: Sending the IP Address Manually to DynDNS

Function
This command is used to force the receiver to send at once its IP address to the DynDNS service. Typically this command may be used when you have noticed that the ISP has just changed the (public) IP address of the receiver. By default, the IP address is sent to the DynDNS server every 10 minutes.

Command Format
Syntax
$PASHS,DDN,SET[*cc]

Parameters
None.

Example
Sending immediately the IP address to the DynDNS service:
$PASHS,DDN,SET*55

Relevant Query Commands
$PASHQ,DDN (query command)
$PASHQ,PAR
$PASHS,DDN,PAR
$PASHS,ETH,PAR

DIF,BDS: Enabling or Disabling BeiDou Correcting Data

Function
This command is used to enable or disable the use of BeiDou correcting data in the position computation. It will be rejected (“NAKed”) if the BeiDou tracking firmware option has not been installed.

Command Format
Syntax
$PASHS,DIF,BDS,s1[*cc]
Set Command Library

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>BeiDou on/off control:</td>
<td>OFF, AUT</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>• OFF: BeiDou correcting data not used</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• AUT: BeiDou correcting data used (in China only)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
<td></td>
</tr>
</tbody>
</table>

Example

Enabling BeiDou correcting data:

$PASHS,DIF,BDS,AUT

Relevant Query Command

$PASHQ,DIF,BDS

DIF,NET: Specifying the Processing Mode for a Network Rover

Function

This command is used to choose which incoming correction data to use when several data sources exist. The command will be NAKed if the RTK Rover ([J]) firmware option has not been activated.

Command Format

Syntax

$PASHS,DIF,NET,s1[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Choice of processing mode:</td>
<td>IP, UHF</td>
<td>IP</td>
</tr>
<tr>
<td></td>
<td>• IP: IP network. The RTK engine will reset on detecting a change in the ID of the base providing correction data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• UHF: UHF networking. A new RTK engine will be run when a new base ID is detected.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
<td></td>
</tr>
</tbody>
</table>

Example

Allowing UHF networking:

$PASHS,DIF,NET,UHF*3A

See also

$PASHQ,DIF,NET (relevant query command)

$PASHS,RTK,STI

$PASHS,BLN

188
DIF,SBA: Specifying Which SBAS Corrections to Use

Function
This command is used to specify the provider(s) of SBAS corrections (SBAS: Space Based Augmentation System).

Command Format

Syntax

\[$PASHS,DIF,SBA,[n(s1)],s2[*cc]\$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>n(s1)</td>
<td>List of SBAS providers used (comma used as separator):</td>
<td>WAA, EGN, MSA, GAG, SDC, QZS, BDS</td>
</tr>
<tr>
<td></td>
<td>• WAA (WAAS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• EGNOS (EGN)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• MSAS (MSA)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• GAGAN (GAG)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• SDCM (Luch) (SDC)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• BEIDOU/BDS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• s1 omitted: see s2 below.</td>
<td></td>
</tr>
<tr>
<td>s2</td>
<td>Enables (ON) or disables (OFF) SBAS. Combined with s1 omitted, enables or disables all SBAS providers.</td>
<td>ON, OFF</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Comments

- BeiDou geostationary satellites generate SBAS-like ionosphere grid data and for this reason are regarded as being part of the SBAS providers. If BeiDou tracking is enabled and BeiDou is declared as one of the SBAS providers through this command, then ionosphere grid data will be decoded and applied. The way the receiver selects/combines corrections from the different SBAS providers is an internal process not described here.
- When disabling an SBAS provider, the corresponding corrections stop being used immediately but the satellite can still be tracked.
- When enabling a new SBAS provider, it is immediately added to the current list of providers and its corrections will be used as soon as they are received.
- Disabling a provider for a very short time does not mean its corrections will be available immediately after re-enabling it.
- The settings made with this command are saved to receiver memory. These will be restored after a power cycle.

Examples

Enabling MSAS:
```plaintext
$PASHS,DIF,SBA,MSA,ON
```

Enabling SBAS mode:
```plaintext
$PASHS,DIF,SBA,,ON
```

Disabling GAGAN:
```plaintext
$PASHS,DIF,SBA,GAG,OFF
```

Disabling SBAS mode:
```plaintext
$PASHS,DIF,SBA,,OFF
```

DIP,OFF: Terminating Direct IP Connection

Function

This command is used to terminate the current IP connection to a server.

Command Format

Syntax

```plaintext
$PASHS,DIP,OFF[,c1]["cc"]
```

Parameters

None.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>IP port used for the connection to the server.</td>
<td>P, Q</td>
</tr>
<tr>
<td></td>
<td>• P: TCP/IP stream 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Q: TCP/IP stream 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>When c1 is omitted, the concerned port is the one specified in the last $PASHS,DIP,PAR command run.</td>
<td></td>
</tr>
<tr>
<td>"cc"</td>
<td>Optional checksum</td>
<td>"00"-"FF"</td>
</tr>
</tbody>
</table>

Examples

Terminating the current connection:
```plaintext
$PASHS,DIP,OFF*4B
```

Related Commands

$PASHQ,DIP (query command)
$PASHS,DIP,PAR
$PASHS,DIP,ON
DIP,ON: Establishing the Programmed Direct IP Connection

Function
This command is used to establish the programmed IP connection.

Command Format

Syntax

```
$PASHS,DIP,ON[c1][*cc]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>IP port used for the connection to the server: • P: TCP/IP stream 1 • Q: TCP/IP stream 2 When c1 is omitted, the concerned port is the one specified in the last $PASHS,DIP, PAR command run.</td>
<td>P, Q</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Example

Establishing the programmed Direct IP connection:

$PASHS,DIP,ON*05

Related Commands

$PASHQ,DIP (query command)

$PASHS,DIP,PAR

$PASHS,DIP,OFF

DIP,PAR: Setting Direct IP Parameters

Function
This command is used to set the different parameters allowing the receiver to perform a Direct IP connection to an external server, typically a base.
Command Format

Syntax

$PASHS,DIP,PAR,ADD,s1,PRT,d2[,LGN,s3,PWD,s4][,IPP,c5][,ACN,d6][*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD,s1</td>
<td>IP address or host name</td>
<td>32 characters max.</td>
<td></td>
</tr>
<tr>
<td>PRT,d2</td>
<td>IP port number</td>
<td>0-65535</td>
<td></td>
</tr>
<tr>
<td>LGN,s3</td>
<td>User name (optional)</td>
<td>32 characters max.</td>
<td></td>
</tr>
<tr>
<td>PWD,s4</td>
<td>Password (optional)</td>
<td>32 characters max.</td>
<td></td>
</tr>
<tr>
<td>IPP,c5</td>
<td>Port used in the receiver to establish the IP connection: • P: TCP/IP stream 1 • Q: TCP/IP stream 2</td>
<td>P, Q</td>
<td>P</td>
</tr>
<tr>
<td>ACN,d6</td>
<td>Auto-connection: • 0: After a power cycle, there won’t be any direct IP connection (default) • 1: After a power cycle, the direct IP connection will be restored</td>
<td>0, 1</td>
<td>0</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>00-FF</td>
<td></td>
</tr>
</tbody>
</table>

Comments

- When connecting to the specified server requires a user name and password, then the receiver will send the serial command $GPUID,s3,s4 after the IP connection with the server has been established.
- P and Q are generic TCP/IP ports. By default, the receiver determines which physical port can be used (Modem, Wifi, Ethernet). You can however specify which physical port should be used through command $PASHS, TCP, RTE.
- The last $PASHS,DIP,PAR command issued determines which of the two ports (P or Q) are used by default in commands $PASHS,DIP,ON and $PASHS,DIF,OFF when these are run without specifying a port (c1 omitted).

Examples

Entering the parameters of the server the receiver has to connect to (through an IP address):

$PASHS,DIP,PAR,ADD,192.65.54.1,PRT,80

Entering the parameters of the server the receiver has to connect to (through a host name):

DRD: Data Recording Duration

Function
This command sets a duration for all the G-files that the receiver will log. When a duration is set, the receiver automatically creates a new G-file right after the currently logged G-file has reached the specified duration.

Command Format

Syntax

$PASHS,DRD,d[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>Data recording duration: • 0: Unlimited duration • Other than 0: Duration in minutes</td>
<td>0, 15, 20, 30, (n x 60). Where n is an integer between 1 and 24</td>
<td>0</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
<td></td>
</tr>
</tbody>
</table>

Comments
- The command will be NAKed if the ring file buffer is currently active (see $PASHS,RFB).
- The recording of G-files are all started at round hour values of GPS time. This means the first file may be shorter in duration than all those that will follow.

Example

Setting the duration to 15 minutes:

$PASHS,DRD,15*0F

Relevant Query Command

$PASHQ,DRD

See also

$PASHS,REC to start/stop data recording.
DRI: Raw Data Recording Rate

Function
This command sets the recording rate for all raw data logged in the internal or external memory. It also changes the output rate of messages ATOM RNX and PVT on memory ports.

Command Format Syntax
\$PASHS,DRI,f[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>Raw data recording rate, in seconds. f=0 means no data output</td>
<td>0, 0.05, 0.1, 0.2, 0.5, 1-6, 10, 12, 15, 20, 30, 60, 120, etc. integer minute up to 960.</td>
<td>1 s</td>
</tr>
</tbody>
</table>

Example
Setting the recording rate to 5 seconds:
\$PASHS,DRI,5*33

Related Commands
\$PASHQ,DRI (query command)
\$PASHS,ATM
\$PASHS,REC

DSY: Daisy Chain

Function
This command is used to redirect all the characters flowing through a given serial port (source port) to another (destination port), without interpreting the flow of redirected data.

Once the daisy chain mode is on, only the command used to discontinue this mode can be interpreted on the source port. Redirection can be in both directions, in which case two DSY commands, instead of one, are required to allow bidirectional data flow.

Command Format Syntax
Redirecting data from a source port to a destination port:
\$PASHS,DSY,c1,c2[*cc]
Discontinuing the daisy chain mode from a specified source port:

$PASHS,DSY,c1,OFF[*cc]

Discontinuing the daisy chain mode for all source ports:

$PASHS,DSY,OFF[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>Source port ID:</td>
<td>A-D, F, I, P, Q, V</td>
</tr>
<tr>
<td></td>
<td>• A, B, D: Serial port</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• C: USB serial port</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• I, P, Q, F: TCP/IP stream</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• V: CAN port</td>
<td></td>
</tr>
<tr>
<td>c2</td>
<td>Destination port ID:</td>
<td>A-D, F, I, P, Q, V</td>
</tr>
<tr>
<td></td>
<td>• A, B, D: Serial port</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• C: USB serial port</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• I, P, Q, F: TCP/IP stream</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• V: CAN port</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>00-FF</td>
</tr>
</tbody>
</table>

Examples

Redirecting port D to port A:

$PASHS,DSY,D,A*3E

Redirecting port D to port A and port A to port D:

$PASHS,DSY,D,A*3E

$PASHS,DSY,A,D*3E

Discontinuing the daisy chain mode from port A:

$PASHS,DSY,A,OFF*35

Discontinuing the daisy chain mode from all source ports:

$PASHS,DSY,OFF*58

DYN: Receiver Dynamics

Function

This command allows you to define the receiver dynamics. The chosen number best represents the receiver motion.

Command Format

Syntax

$PASHS,DYN,d1[*cc]
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Receiver dynamics:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1: Static</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2: Quasi-static</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 3: Walking</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 4: Ship</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 5: Automobile</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 6: Aircraft</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 7: Unlimited</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 8: Adaptive</td>
<td>1-9</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>• 9: User-defined (see also $PASHS,UDP)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example

Setting rover dynamics to “Walking”:

$PASHS,DYN,3*39

Comments

- If the receiver is set as an RTK rover using a moving base mode, it is recommended to use d1=8 (Adaptive).
- In the adaptive mode (8), the receiver analyzes its own motion and automatically chooses one of the dynamic models that is the most suitable. The possible dynamic models are those corresponding to the other choices in the command (i.e. 2 to 7, but not 1 or 9). Using the adaptive mode rejects the possible use of the user-defined dynamic model.

Related Commands

$PASHQ,DYN (query command)
$PASHQ,PAR
$PASHS,UDP

ELM: Setting the Elevation Mask for Raw Data Output

Function

This command is used to set the minimum satellite elevation for the output of raw and differential measurement data. The following data are impacted: RT2, RT3, CMR, CMR+, ATM regardless of their use (i.e. as input protocol for differential
data or in raw data recording). The value entered through this command applies to all sensors on the board.

NOTE: If the mask value set with command PEM exceeds the one set with ELM, then it is the mask set with PEM that is used to output raw /differential data.

Command Format Syntax

`$PASHS,ELM,d1[*cc]`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Elevation mask, in degrees.</td>
<td>0-90°</td>
<td>5</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
<td></td>
</tr>
</tbody>
</table>

Example

Setting the elevation mask to 10 degrees:

`$PASHS,ELM,10*1C`

ENC: Setting Transport Mode for Differential Data

Function

This command defines the transport mode used for every differential data message flowing through the specified physical port.

Command Format Syntax

`$PASHS,ENC,c1,s2[*cc]`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>Port ID.</td>
<td>A, B, C, D, F, I, P, Q, M, U</td>
<td></td>
</tr>
<tr>
<td>s2</td>
<td>Transport identifier.</td>
<td>See table below</td>
<td>NTV</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
<td></td>
</tr>
</tbody>
</table>

The list of transport identifiers is the following:

<table>
<thead>
<tr>
<th>Data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASH</td>
<td>$PASHR transport used for encapsulation of all non-Ashtech messages</td>
</tr>
<tr>
<td>RT3</td>
<td>Standardized RTCM-3 transport for encapsulation of all non-RT3 messages.</td>
</tr>
<tr>
<td>NTV</td>
<td>NaTIVe transport, i.e. no encapsulation for all output messages.</td>
</tr>
</tbody>
</table>
Example
Setting the data encapsulation mode to “NTV” for port A:
$PASHS,ENC,A,NTV*30

Comments
This command is only applicable to physical ports.
The RT3 encapsulation mode is no longer supported.

ETD,PAR: Setting Ethernet Driver Parameters

Function
This command is used to change the parameters of the Ethernet drivers. These parameters are stored in permanent memory. These settings will not be affected if you further run commands $PASHS,RST or $PASHS,INI.

Command Format Syntax
$PASHS,ETD,PAR[,AUT,s1][,DPL,s2][,SPD,d3] *[cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
</table>
| AUT,s1 | Auto-negotiation:
• ON: Enable
• OFF: Disable | ON, OFF | ON |
| DPL,s2 | Duplex mode:
• : Set full-duplex mode
• : Set half-duplex mode | FULL, HALF | FULL |
| SPD,d3 | Speed, in Mbits/second.
(d3 required only if s1= OFF) | 10, 100 | 100 |
| *cc | Optional checksum | *00-*FF | |

Example
Disabling auto-negotiation:
$PASHS,ETD,PAR,AUT,OFF,DPL,FULL,SPD,100

Enabling auto-negotiation:
$PASHS,ETD,PAR,AUT,ON

Related Commands
$PASHQ,ETD
$PASHS,ETH,ON
$PASHS,ETH,OFF
ETH,OFF: Powering Off the Ethernet Port

Function
This command is used to power off the Ethernet port. By default, the Ethernet port is on.

Command Format
Syntax

```
$PASHS,ETH,OFF[*cc]
```

Parameters
None.

Example
Turning off the Ethernet port:

```
$PASHS,ETH,OFF*4F
```

Related Commands

- `$PASHQ,ETH` (query command)
- `$PASHS,ETH,ON`
- `$PASHS,ETH,PAR`

ETH,ON: Powering On the Ethernet Port

Function
This command is used to power on the Ethernet port. By default, the Ethernet port is on.

Command Format
Syntax

```
$PASHS,ETH,ON[*cc]
```

Parameters
None.

Example
Turning on the Ethernet port:

```
$PASHS,ETH,ON*01
```

Related Commands

- `$PASHQ,ETH` (query command)
- `$PASHS,ETH,OFF`
- `$PASHS,ETH,PAR`
ETH,PAR: Ethernet Parameters

Function
This command is used to set the Ethernet parameters.

Command Format
Syntax
$PASHS,ETH,PAR[DHP,s1][ADD,s2][MSK,s3][GTW,s4][DN1,s5][DN2,s6][MAC,s7][ACN,d8][*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHP,s1</td>
<td>DHCP mode: 0: Disabled (static IP address) 1: Enabled (dynamic IP address)</td>
<td>0, 1</td>
<td>1</td>
</tr>
<tr>
<td>ADD,s2</td>
<td>IP address when s1=0</td>
<td>0.0.0.0-255.255.255.255</td>
<td>192.168.0.1</td>
</tr>
<tr>
<td>MSK,s3</td>
<td>Sub-network mask when s1=0</td>
<td>0.0.0.0-255.255.255.255</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>GTW,s4</td>
<td>Gateway IP address when s1=0</td>
<td>0.0.0.0-255.255.255.255</td>
<td>255.255.255.255</td>
</tr>
<tr>
<td>DN1,s5</td>
<td>DNS 1 IP address when s1=0</td>
<td>0.0.0.0-255.255.255.255</td>
<td>255.255.255.255</td>
</tr>
<tr>
<td>DN2,s6</td>
<td>DNS 2 IP address when s1=0</td>
<td>0.0.0.0-255.255.255.255</td>
<td>255.255.255.255</td>
</tr>
<tr>
<td>MAC,s7</td>
<td>MAC address</td>
<td>00:00:00:00:00:00-FF/FF/FF/FF/FF/FF</td>
<td></td>
</tr>
<tr>
<td>ACN,d8</td>
<td>(Obsolete)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*cc Optional checksum *00-*FF

Example
Ethernet configuration with DHCP:
$PASHS,ETH,PAR,DHP,1*2E

Ethernet configuration without DHCP (static IP address):
$PASHS,ETH,PAR,DHP,0,ADD,10.20.2.28,MSK,255.255.255.0,GTW,10.20.2.1,DN1,134.20.2.16,DN2,134.20.2.3,MAC,01:02:03:04:05:06,ACN,1*70

Relevant Query Command
$PASHQ,ETH (query command)
$PASHS,ETH,OFF
$PASHS,ETH,ON
FIL,COPY: Copying Files from Internal to External Memory

Function
Typically, this command is used to copy the specified file(s), or all the files, from the internal to external memory (USB).

Command Format

Syntax

\[\$\text{PASHS,FIL,COPY,}s1\text{[cc]} \]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
</table>
| s1 | Specifies file(s) to be copied:
 - Complete file name
 - Or range of files using the "*" character combined with quotation marks. Examples:
 - "*.*"
 - "<filename>.*"
 - ".<file_extension>"
 - Or s1=ALL: All files present in internal memory are copied to external memory.
 - Or s1=STP: Instantly stops copying files. | <filename(s)>, ALL, STP |
| cc | Optional checksum | 00-FF |

Examples

Copying one G file:

\[\$\text{PASHS,FIL,COPY,Gabcd09.241} \]

Copying all files:

\[\$\text{PASHS,FIL,COPY,ALL} \]

Copying all files recorded on day 241:

\[\$\text{PASHS,FIL,COPY,".*.241"} \]

Comments

- After the file or files have been copied, the receiver returns:
 \[\$\text{PASHR,FIL,OK\text{*1F}} \]

- If an error occurs during the copy operation, the receiver returns:
 \[\$\text{PASHR,FIL,FAIL\text{*19}} \]
• If copying files is stopped using the command, the receiver returns:
 $PASHR,FIL,STP*4C

Related Commands

$PASHQ,FIL,LST
No query command

FIL,DEL: Deleting Files and Directories

Function
This command allows you to delete files and directories from the selected internal or external memory.

Command Format

Syntax

$PASHS,FIL,DEL,[d1],[s2],[s3],s4[[...],sn]["cc"]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Memory from which to delete files or directories: 0: Internal memory (user data partition) 2: USB memory 3: Internal memory (log file partition) If d1 is omitted, files or directories are deleted from the memory specified by the last run $PASHS,MEM command.</td>
<td>0, 2, 3</td>
</tr>
<tr>
<td>s2</td>
<td>Path</td>
<td>255 characters max.</td>
</tr>
<tr>
<td>s3</td>
<td>Name of the file or directory you want to delete.</td>
<td>255 characters max.</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sn</td>
<td>Name of the file or directory you want to delete.</td>
<td>255 characters max.</td>
</tr>
<tr>
<td>"cc"</td>
<td>Optional checksum</td>
<td>00-FF</td>
</tr>
</tbody>
</table>

Comments

• To delete a file or directory located in a subdirectory, the full path to this file or directory should be specified in the s2 field. You cannot enter a path in the s3 field.

• The “*” character can be used as a wild card to delete several files at the same time. In this case, the complete string should be placed between simple or double quotation marks.
Examples
Deleting a G file:
$PASHS,FIL,DEL,,,GabcdA09.241*69

Deleting three G files:
$PASHS,FIL,DEL,,,GabcdA09.241,GabcdB09.242,GabcdC09.242*68

Related Commands
$PASHQ,FIL,LST
$PASHS,MEM

FIL,GET: Downloading a File Thru the Current Port

Function
This command is used to download a file from the board through the currently used port. There’s a size limit for the file which is 2 Gbytes maximum.

Command Format

Syntax
$PASHS,FIL,GET,s1,[d2],[d3],[d4],[d5][*cc]

Suspending current download:
$PASHS,FIL,GET,OFF[*cc]
When issuing this command, first $PASHR,ACK*3D is returned, followed by a number of messages, formatted according to the syntax below.

$PASHR,FIL,GET,<length><flags><file position><data><checksum> <cr><lf>

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>File name (including path if the file is stored in a sub-folder)</td>
<td>255 characters max.</td>
<td></td>
</tr>
<tr>
<td>d2</td>
<td>Memory where the file is stored: • 0: Internal memory (user data partition) • 2: USB memory • 3: Internal memory (log file partition)</td>
<td>0, 2, 3</td>
<td>0</td>
</tr>
<tr>
<td>d3</td>
<td>Position in the file where to start downloading from (in bytes)</td>
<td>0-2,048,000,000</td>
<td>0</td>
</tr>
<tr>
<td>d4</td>
<td>Permitted size of downloaded file, in bytes d4=0: The entire file will be transferred</td>
<td>0-2,048,000,000</td>
<td>0</td>
</tr>
<tr>
<td>d5</td>
<td>Packet size, in bytes. If omitted or '0', the packet size is '2048'</td>
<td>0-64,000</td>
<td>2048</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum *00-*FF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Response Format

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>length</td>
<td>2 bytes</td>
<td>Length of data packet</td>
</tr>
<tr>
<td>flags</td>
<td>1 byte</td>
<td>Packet identification: • 0: This packet is the last one (end of file). • 1: This is a data packet, not the last one in the file.</td>
</tr>
<tr>
<td>file position</td>
<td>4 bytes</td>
<td>Indicates the position within the file of the first data byte in this packet measured from the beginning of the file.</td>
</tr>
<tr>
<td>data</td>
<td>Length</td>
<td>Data</td>
</tr>
<tr>
<td>checksum</td>
<td>1 byte</td>
<td>Checksum: $<length>+<flags>+<file position>+<data>$ modulo 256</td>
</tr>
</tbody>
</table>

Comments

If the piece of software in charge of collecting the $PASHR,FIL,GET messages detects missing data, it must be capable of suspending the download and restart it from the right index in the file, i.e. from where missing data were detected.

Examples

$PASHS,FIL,GET,GazerA09.123,0,0,0,2048
$PASHR,FIL,GET,<2048><1><0><data><checksum> <cr><lf>
$PASHR,FIL,GET,<2048><1><4096><data><checksum> <cr><lf>
$PASHR,FIL,GET,<2048><1><6144><data><checksum> <cr><lf>
$PASHR,FIL,GET,<2048><1><8192><data><checksum> <cr><lf>
$PASHR,FIL,GET,<1502><0><8192><data><checksum>

$PASHS,FIL,GET,2013/123/GazerA09.123
$PASHR,FIL,GET,<2048><1><0><data><checksum>
$PASHR,FIL,GET,<2048><1><4096><data><checksum>
$PASHR,FIL,GET,<2048><1><6144><data><checksum>
$PASHR,FIL,GET,<1502><0><8192><data><checksum>

Related Commands
$PASHQ,FIL,LST

FIL,WRT: Writing a File

Function
This command is used to create a file in the board. If the file already exists, it is overwritten.

Command Format
Syntax
Specifying where to create the file and naming it
$PASHS,FIL,WRT,OPN,d1,s2,d3*cc

Writing data to the file:
$PASHS,FIL,WRT,DAT,<length><flags><file position><data><checksum><cc><cr><lf>

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Memory where the file is created:</td>
<td>0, 2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>• 0: Internal memory (user data partition)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2: USB memory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s2</td>
<td>File name (including path if the file is created in a sub-folder)</td>
<td>255 char. max.</td>
<td></td>
</tr>
<tr>
<td>d3</td>
<td>Open file mode:</td>
<td>0, 1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>• 0: Creates a new file (or overwrites the existing one)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1: Opens an existing file</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*cc Optional checksum *00-*FF

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Size</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>length</td>
<td>Length of data packet</td>
<td>2 bytes</td>
<td>0-2048</td>
</tr>
</tbody>
</table>
Set Command Library

Comments

After receiving $PASHS,FIL,WRT,OPN..., the board will expect $PASHS,FIL,WRT command lines exclusively (all other commands will be ignored).

The board will return to normal operation after it has received the “end of file” flag, or no data was received for the last 30 seconds, or an error was detected.

Response Format

Syntax

In response to each $PASHS,FIL,WRT,DAT/OPN,... command, the board returns a status report, using the syntax below.

$PASHR,FIL,WRT,d3*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Size</th>
<th>Range</th>
</tr>
</thead>
</table>
| d3 | Result code:
• 0: No error
• 1: Not enough memory
• ... | 255 char. max. |
| *cc | Checksum | 1 byte | 0-255 |

Example

$PASHS,FIL,WRT,OPN,0 myfile
$PASHS,FIL,WRT,DAT,<2048><1><0><data><checksum>
$PASHR,FIL,WRT,0
$PASHS,FIL,WRT,DAT,<2048><1><2048><data><checksum>
$PASHR,FIL,WRT,0
$PASHS,FIL,WRT,DAT,<2048><1><4096><data><checksum>
$PASHR,FIL,WRT,0
$PASHS,FIL,WRT,DAT,<1502><0><6144><data><checksum>
$PASHR,FIL,WRT,0

etc.
FMT: Formatting Internal Memory or SD Card

Function
This command is used to format the board’s internal memory or the SD card inserted in the board.

Command Format
Syntax
$PASHS,FMT,d[*cc]

Parameters
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>Formatting option:</td>
<td>0, 1, 3</td>
</tr>
<tr>
<td></td>
<td>• 0: Internal memory (user data partition)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1: Internal memory (all partitions)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 3: USB memory</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>00-FF</td>
</tr>
</tbody>
</table>

Example
Formatting the internal memory:
$PASHS,FMT,1

Comments
- The board will then be re-started if you use formatting option “0” or “1”.
- Formatting option “0” formats the internal memory where G-files are stored. After formatting, all G-files, if any left there, are lost.
- Formatting option “1” formats the internal memory entirely. After formatting, G-files and log files, if any left there, and receiver settings are all lost.
- Formatting option “3” formats the USB memory.

Related Commands
None.

FTP,OFF: Ending Data Transfer with FTP

Function
This command is used to stop the data transfer currently in progress with an FTP server.
Command Format Syntax
$PASHS,FTP,OFF[*cc]

Parameters
None.

Example
Stop data transfer:
$PASHS,FTP,OFF*54

Related Commands
$PASHQ,FTP (query command)
$PASHS,FTP,PAR
$PASHS,FTP,PUT

FTP,PAR: FTP Settings

Function
This command is used to enter the settings of an external FTP server.

Command Format Syntax
$PASHS,FTP,PAR[,ADD,s1][PRT,d2][LGN,s3][PWD,s4][PTH,s5][*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD,s1</td>
<td>IP address or host name of the FTP server</td>
<td>32 characters max.</td>
<td>-</td>
</tr>
<tr>
<td>PRT,d2</td>
<td>FTP server port number</td>
<td>0-65535</td>
<td>21</td>
</tr>
<tr>
<td>LGN,s3</td>
<td>FTP server login</td>
<td>32 characters max.</td>
<td></td>
</tr>
<tr>
<td>PWD,s4</td>
<td>FTP server password</td>
<td>32 characters max.</td>
<td></td>
</tr>
<tr>
<td>PTH,s5</td>
<td>Path used on the FTP server</td>
<td>255 characters max.</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
<td></td>
</tr>
</tbody>
</table>

Example
$PASHS,FTP,PAR,ADD,ftp.ashtech.com,PRT,21,LGN,Ashtech,PWD,u6hu8z,PTH,/my folder*14
FTP,PUT: Uploading Files to FTP

Function
This command is used to send files from the receiver’s internal memory or USB key to the FTP server, as defined through the $PASHS,FTP,PAR command. Up to 10 files may be transferred through a single command line.

Command Format

```
$PASHS,FTP,PUT,[d1],[s2],[s3],[s5],[s13]["cc]
```

Relevant Query Command

$PASHQ,FTP

See Also

$PASHS,FTP,PUT
Set Command Library

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Memory where the files to be transferred can be found:</td>
<td>0,2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>• 0: Receiver's internal memory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2: USB key</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If d1 is missing, the memory selected through $PASHS,MEM is the one where the files should be found.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s2</td>
<td>Subfolder created on the FTP server, in the folder specified in the Path parameter (PTH,s5) of the $PASHS,FTP,PAR command.</td>
<td>255 characters max.</td>
<td>Empty</td>
</tr>
<tr>
<td></td>
<td>if s2 is not specified, files are saved directly in the <Path> folder.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s3</td>
<td>Remote path on FTP server</td>
<td>255 characters max.</td>
<td>Empty</td>
</tr>
<tr>
<td>s4-s13</td>
<td>Names of the files to be uploaded to the FTP server.</td>
<td>255 characters max.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The "*" character can be used to select several files. In this case, the filename string should be placed between quotation marks (" or ')</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>00^-FF</td>
<td></td>
</tr>
</tbody>
</table>

Examples

Transferring a single file (G1234A09.134) to the FTP server:

$$PASHS,FTP,PUT,,"G1234A09.134"*59$$

Transferring two files (GabcdA09.134 and GabcB09.134) to the FTP server:

$$PASHS,FTP,PUT,0,,"GabcdA09.134,GabcB09.134"*11$$

Transferring all the files from the internal memory to the FTP server:

$$PASHS,FTP,PUT,0,,"*.*"*54$$

Transferring all the files from the USB key collected on day 65 to the FTP server:

$$PASHS,FTP,PUT,2,,"*.65"*ED$$

Comments

• Right after submitting a command line, the following response line will be returned if the command syntax is correct:

$$PASHR,ACK*3D$$
• After a successful file transfer, the following response line is returned:
 $PASHR,FTP,OK*1E

• If the file transfer fails, the following response line is returned:
 $PASHR,FTP,FAIL*18

• If you submit a new command while a file transfer sequence is still in progress, your new command is rejected and the following response line is returned:
 $PASHR,FTP,BUSY*07

Related Commands
$PASHQ,FTP (query command)
$PASHS,FTP,PAR
$PASHS,MEM

GAL: Galileo Tracking

Function
This command is used to enable or disable Galileo tracking.

Command Format
Syntax
$PASHS,GAL,s1[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Enabling/disabling Galileo tracking:</td>
<td>ON, OFF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• On: Track and use Galileo satellites</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Off: Do not track Galileo satellites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>00-FF</td>
<td></td>
</tr>
</tbody>
</table>

Comments
The command is NAKed if the [O] option is not installed.

Example
Enabling Galileo:

$PASHS,GAL,ON*12

Related Commands
$PASHS,QZS
$PASHS,BDS
GEM: Choosing a Geoid Model

Function
This command is used to tell the receiver which of the two available geoid models it should be using. The geoid model primarily affects the height (above the selected geoid) reported in every NMEA GGA message.

Command Format
Syntax
$PASHS,GEM,s1[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Geoid model to be used:</td>
<td>STANAG, EGM96</td>
<td>STANAG</td>
</tr>
<tr>
<td></td>
<td>• STANAG: STANAG 4294 geoid model</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• EGM96: EGM 96 geoid model</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example
Choosing EGM96:
$PASHS,EGM,EGM96

Related Commands
$PASHQ,GEM (query)

GLB: Choice of Antenna Input for L-Band Reception

Function
This command is used to define the antenna input used for receiving the L-band signal. It does not cause the receiver to reset.

Command Format
Syntax
$PASHS,GLB,c1[*cc]
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>Antenna used for L-band reception:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ON (or A1): Antenna input #1 is used for L-band signal reception.</td>
<td>ON, OFF, A1</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>• OFF: No L-band signal reception.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example

Receiving L-band signal from antenna input #1:

$PASHS,GLB,A1

Comments

This command is similar to $PASHS,GPS or $PASHS,GLO as it does not require any additional setting to start or stop tracking the L-band signal. It is applicable only for specific DUO combinations.

See also

$PASHQ,GLB (relevant query command)

$PASHS,SNS

$PASHS,LBN,USE

GLO: GLONASS Tracking

Function

This command is used to enable or disable GLONASS tracking. The command is valid only if the GLONASS option has been activated.

Command Format

$PASHS,GLO,s1[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Enables (ON) or disables (OFF) GLONASS tracking.</td>
<td>ON, OFF</td>
<td>ON</td>
</tr>
</tbody>
</table>

Example

Enabling GLONASS:

$PASHS,GLO,ON*1C

See also

$PASHQ,GLB (relevant query command)

$PASHS,SNS

$PASHS,LBN,USE
Related Commands

$PASHQ,GLO (query command)
$PASHS,GPS
$PASHS,GAL
$PASHS,BDS
$PASHS,QZS
$PASHS,SBA

GLx: Tracking Signals in Different Bands

Function
This command is used to enable or disable the tracking of each of the possible signals in the corresponding GNSS RF band (impacts receiver operation in the same way as the corresponding firmware options do).

Command Format Syntax

$PASHS,GL1,s1[*cc]
$PASHS,GL2,s2[*cc]
$PASHS,GL6,s6[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
</table>
| s1 | Enabling/disabling L1 tracking:
• ON: Track and use L1 GNSS signals
• OFF: Do not track L1 GNSS signals | Hard coded to ON | ON |
| s2 | Enabling/disabling L2 tracking:
• ON: Track and use L2 GNSS signals
• OFF: Do not track L2 GNSS signals | ON, OFF | ON |
| s6 | Enabling/disabling L6 tracking:
• ON: Track and use L6 GNSS signals
• OFF: Do not track L6 GNSS signals | ON, OFF | |
| *cc | Optional checksum | *00-*FF | - |

Comments

The table below indicates which RF bands the “Lx” labels in the above table refer to.

<table>
<thead>
<tr>
<th>“Lx” Label</th>
<th>RF ID</th>
</tr>
</thead>
</table>
| L1 | GPS L1
GLONASS G1
BEIDOU B1
GALILEO E1
QZSS L1
SBAS L1 |
Example
Enabling L2 tracking:
$PASHS,GL2,ON

Related Commands
$PASHQ,GLx (query commands)

<GNS>,USE: Enabling or Disabling the Tracking of a GNSS Satellite

Function: This function is used to enable or disable the tracking of one or more particular GNSS satellites.

Command Format Syntax
$PASHS,s1,USE,[n(d2)],s3[*cc]
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>GNSS type:</td>
<td>GPS, GLO, GAL, SBA, QZS, BDS</td>
<td></td>
</tr>
<tr>
<td>d2</td>
<td>Satellite PRN:</td>
<td>1-39</td>
<td>-</td>
</tr>
<tr>
<td>d3</td>
<td>Enable (ON) or Disable (OFF) tracking</td>
<td>ON, OFF</td>
<td>ON</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
<td>-</td>
</tr>
</tbody>
</table>

Comments

- Use the command as many times as the number of satellites you want to disable from tracking. If a specified satellite number is out of range, the command is NAKed.
- The tracking of a given satellite is suspended immediately after disabling it. The satellite is also excluded from the list of searched/tracked satellites.
- Conversely, re-enabling a previously disabled satellite consists of re-inserting it into the list of searched/tracked satellites.
- Be aware that re-enabling the tracking of a satellite shortly after having disabled it does not mean that the receiver will be able to track back this satellite quickly.

Examples

Disabling GLONASS satellite PRN 5:
```
$PASHS,GLO,USE,5,OFF
```

Disabling all GLONASS satellites:
```
$PASHS,GLO,USE,,OFF
```

Re-enabling all GPS satellites previously disabled:
```
$PASHS,GPS,USE,,ON
```
GPS: GPS Tracking

Function
This command is used to enable or disable GPS tracking. The command is valid only if the GPS option (\(\text{[N]}\)) has been activated.

Command Format

Syntax

\[\$\text{PASHS,GPS},s1[*cc]\]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Enables (ON) or disables (OFF) GPS tracking.</td>
<td>ON, OFF</td>
<td>ON</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
<td></td>
</tr>
</tbody>
</table>

Example

Enabling GPS:

\[\$\text{PASHS,GPS,ON}\]

Related Commands

- \(\$\text{PASHQ,GPS}\) (query command)
- \(\$\text{PASHS,SBA}\)
- \(\$\text{PASHS,GLO}\)
- \(\$\text{PASHS,GAL}\)
- \(\$\text{PASHS,QZS}\)
- \(\$\text{PASHS,BDS}\)

GSF: Enabling/Disabling GSOF Messages

Function
This command is used to enable or disable GSOF messages.

Command Format

Syntax

\[\$\text{PASHS,GSF},s1,c2,s3,[f4][*cc]\]

Related Commands

- \(\$\text{PASHQ,GSF}\) (query command)
Set Command Library

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>GSOF message type (see table below)</td>
<td>1, 3, 8, 9, 11, 12, 27, 33, 38</td>
<td>-</td>
</tr>
<tr>
<td>c2</td>
<td>Output port:</td>
<td>A, B, C, D, F, I, P, Q, M</td>
<td>-</td>
</tr>
<tr>
<td>s3</td>
<td>Enabling/disabling command</td>
<td>ON, OFF</td>
<td>-</td>
</tr>
<tr>
<td>f4</td>
<td>Output rate, in seconds</td>
<td>0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60, 120, 180, 240, 300, 360, 600, 720, 900, 1200, 1800, 3600</td>
<td>1 s</td>
</tr>
</tbody>
</table>

Supported GSOF messages:

<table>
<thead>
<tr>
<th>Message Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>POSITION TIME</td>
</tr>
<tr>
<td>2</td>
<td>LAT, LONG, HEIGHT</td>
</tr>
<tr>
<td>3</td>
<td>ECEF POSITION</td>
</tr>
<tr>
<td>8</td>
<td>VELOCITY DATA</td>
</tr>
<tr>
<td>9</td>
<td>PDOP INFO</td>
</tr>
<tr>
<td>11</td>
<td>POSITION VCV INFO</td>
</tr>
<tr>
<td>12</td>
<td>POSITION VCV INFO</td>
</tr>
<tr>
<td>16</td>
<td>CURRENT TIME</td>
</tr>
<tr>
<td>27</td>
<td>ATTITUDE INFO</td>
</tr>
<tr>
<td>33</td>
<td>ALL SV BRIEF INFO</td>
</tr>
<tr>
<td>38</td>
<td>POSITION TYPE INFORMATION</td>
</tr>
</tbody>
</table>

Example

Enabling GSOF message type “1” at 1 second:

$PASHS,GSF,1,C,ON,1

Related Commands

|$PASHQ,OUT,GSF (query command)|
|$PASHS,GSF,ALL|

GSF,ALL: Disabling all GSOF Messages on a Port

Function

This command is used to disable all the GSOF messages currently delivered on the specified output port.
Command Format Syntax

\$PASHS,GSF,ALL,c1,OFF[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
</table>
| c1 | Output port delivering GSOF messages:
 • Serial port: A, B or D
 • USB serial port: C
 • TCP/IP client stream: P, Q
 • TCP/IP server stream: I, F
 • To G-file: M | A, B, C, D, F, I, P, Q, M | - |
| *cc | Optional checksum | 00-FF | |

Example

Disabling all GSOF messages on port A:

\$PASHS,GSF,ALL,A,OFF

Related Commands

\$PASHS,GSF

INI: Resetting Receiver According to Your Preference

Function

This command resets the receiver processor and memory according to the option you choose.

Command Format Syntax

\$PASHS,INI,d1[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
</table>
| d1 | Memory reset code:
 • 0: No memory reset
 • 1: Cold start
 • 2: Cold start + memory formatting
 • 3: Warm start + memory formatting
 • 4: No memory reset+ RTC time cleared
 • 5: Warm start
 • 9: Cold start (ignore default_config.cmd) | 0, 1, 2, 3, 4, 5, 9 | See Memory Reset Codes table below |
| *cc | Optional checksum | 00-FF | |
Memory Reset Codes:

<table>
<thead>
<tr>
<th>Reset Code:</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear receiver parameters in backup memory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Clear ephemeris data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Clear almanac data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Clear latest position</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Clear RTC time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Restart processor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Clear receiver parameters in RAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Format internal memory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Run default_config.cmd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

Comment
If the board contains a `default_config.cmd` file, all commands read from this file will be run after resetting the board through `$PASHS,INI,1` or `$PASHS,INI,2`.

Example
Asking for a cold start followed by a reconfiguration of the board using `default_config.cmd`:

$PASHS,INI,1

Related Commands
$PASHS,RST
$PASHS,DFC,SET

LBN,BEM: Additional Settings for User-Added L-Band Satellite

Function
This command is used to enter additional parameters for a manually specified L-band satellite (and only for this type of satellite). These parameters come as a supplement to those defined with `$PASHS,LBN,SAT`.

Applying this command makes sense when a new L-band satellite is introduced and there has been no firmware update yet that would have taken into account the introduction of this new satellite.

Command Format Syntax

$PASHS,LBN,BEM,s1.n(B,f2,f3,f4,f5,f6)["cc]
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Name of L-band satellite</td>
<td>31 characters max.</td>
</tr>
<tr>
<td>n</td>
<td>Indicates that the expression between brackets that follows will be repeated n times. There may be up to 5 different ellipses possible for a given L-band satellite, hence "n" ranging from 1 to 5.</td>
<td>1-5</td>
</tr>
<tr>
<td>B</td>
<td>Separator between footprint beam ellipses</td>
<td>-</td>
</tr>
<tr>
<td>f2</td>
<td>Beam footprint orientation, in degrees</td>
<td>-89.9 to 90.0</td>
</tr>
<tr>
<td>f3</td>
<td>Latitude axis radius, in degrees</td>
<td>0.0 to 90.0</td>
</tr>
<tr>
<td>f4</td>
<td>Longitude axis radius, in degrees</td>
<td>0.0 to 180.0</td>
</tr>
<tr>
<td>f5</td>
<td>Latitude center</td>
<td>-90.0 to 90.0</td>
</tr>
<tr>
<td>f6</td>
<td>Longitude center</td>
<td>-179.9 to 180.0</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Example

Setting parameters for satellite RTXDD:

$PASHS,LBN,BEM,RTXDD,B,70,1,40,30,0,37,B,0.1,40,60,35,0*11

Comments

- All the parameters of an ellipse must be specified explicitly, otherwise none of the submitted parameters for this ellipse will be accepted.
- If not a single footprint beam ellipse is specified for a given L-band satellite, then this satellite will have the lowest probability of being used for tracking, compared to other L-band satellites also in view.

In other words, without one or more ellipses specified for a given L-band satellite, this satellite is likely not to be found as the best one by the automatic best L-band search procedure.

On the other hand, if this L-band satellite is expected to be assigned for tracking manually, then no ellipse parameters are needed.

See also

$PASHQ,LBN,BEM (relevant query command)

$PASHS,LBN,USE

$PASHS,LBN,SAT
LBN,SAT: Adding a New L-Band Satellite

Function
This command is used to add a new L-band satellite manually, by entering its name and a few other primary parameters.
Applying this command makes sense when a new L-band satellite is introduced and there has been no firmware update yet that would have taken into account the introduction of this new satellite.

Command Format Syntax
$PASHS,LBN,SAT,s1,d2,d3,[f4][,s5]["cc"]

To delete a satellite:
$PASHS,LBN,SAT,s1,DELETE["cc"]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Name of L-band satellite</td>
<td>31 characters max.</td>
</tr>
<tr>
<td>d2</td>
<td>Carrier frequency, in Hertz</td>
<td></td>
</tr>
<tr>
<td>f3</td>
<td>Baud rate, in bits/second</td>
<td>600, 1200, 2400, 4800</td>
</tr>
<tr>
<td>f4</td>
<td>Orbital satellite longitude, in degrees</td>
<td>-179.9 to 180.0</td>
</tr>
<tr>
<td>s5</td>
<td>Provider name:</td>
<td>RTX, TRS</td>
</tr>
<tr>
<td></td>
<td>• RTX: Trimble RTX (default)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• TRS: TERIAsat</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Example
Entering manually newly introduced satellite RTXDD:
$PASHS,LBN,SAT,RTXDD,600,22,RTX,00-*FF

Comments
• Up to four new L-band satellites may be added using this command. To add more satellites, use $PASHS,INI,1 to delete the already four added ones. Then you can add another new L-band satellite.
• The command will be NAKed if you try to add an L-band satellite that is originally present in the default L-band almanac.
• To modify the parameters of an L-band satellite you have added manually, resume the command in which you will specify the same satellite name, but this time with the correct accompanying parameters.
Any L-band satellite added manually is stored in the default L-band almanac. That means it is an equal partner to any other hard coded L-band satellite provided its orbital satellite longitude (see f4 above) and its footprint ellipse(s) (see command $PASHS,LBN,BEM) have been defined correctly. It will have the lowest probability of being used for tracking among all L-band satellites in view if its orbital satellite longitude and/or footprint ellipses have not been defined.

The tracking of manually added L-band satellites relies on the same command as the other L-band satellites (that is command $PASHS,LBN,USE). Through this command, you decide whether you want automatic or manual selection of the L-band satellite used.

In NMEA SLB and ATOM OSS messages, the numbers reported for manually added L-band satellites are in the range (N+1) to (N+4) where N is the size of the hard-coded L-band satellite almanac (all providers included). In GGA, the reported base ID is correspondingly in the range 99 to 96.

You can delete an L-band satellite from the L-band almanac using command $PASHS,LBN,SAT,s1,DELETE where s1 is the name of the L-band satellite you want to delete.

See also
$PASHQ,LBN (relevant query command)
$PASHS,LBN,USE
$PASHS,LBN,BEM

LBN,USE: Tracking L-Band Providers/Geo-satellites

Function
This command is used to start or stop tracking the specified L-band provider/satellite. Enabling a provider enables all satellites from this provider and disables all satellites from the other providers. Enabling a satellite disables all other satellites.

Command Format
Syntax
&PASHS,LBN,USE,s1,s2[*cc]
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>L-band provider names or names of specific L-band satellites</td>
<td>See table below.</td>
</tr>
<tr>
<td>s2</td>
<td>Tracking request:</td>
<td>ON, OFF</td>
</tr>
<tr>
<td></td>
<td>• ON: Enable L-band tracking (ON by default)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• OFF: Disable L-band tracking</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>^00-*FF</td>
</tr>
</tbody>
</table>

List of Today's L-Band Providers/Satellites

<table>
<thead>
<tr>
<th>L-Band</th>
<th>Provider or Sat Name</th>
<th>“s1” Field</th>
<th>Provider</th>
<th>Frequency (MHz)</th>
<th>Baud Rate</th>
<th>Sat ID in SLB</th>
<th>Base ID in GGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTX</td>
<td>RTX (default)</td>
<td></td>
<td>Trimble RTX</td>
<td>1539.8325</td>
<td>600</td>
<td>2</td>
<td>102</td>
</tr>
<tr>
<td>RTXAP</td>
<td>RTXAP</td>
<td></td>
<td>Trimble RTX</td>
<td>1539.8325</td>
<td>600</td>
<td>6</td>
<td>106</td>
</tr>
<tr>
<td>RTXSA</td>
<td>RTXSA</td>
<td></td>
<td>Trimble RTX</td>
<td>1545.4900</td>
<td>2400</td>
<td>7</td>
<td>107</td>
</tr>
<tr>
<td>RTXEA</td>
<td>RTXEA</td>
<td></td>
<td>Trimble RTX</td>
<td>1545.5300</td>
<td>600</td>
<td>8</td>
<td>108</td>
</tr>
<tr>
<td>RTXIO</td>
<td>RTXIO</td>
<td></td>
<td>Trimble RTX</td>
<td>1555.8080</td>
<td>2400</td>
<td>9</td>
<td>109</td>
</tr>
<tr>
<td>RTXNA</td>
<td>RTXNA</td>
<td></td>
<td>TRAISat</td>
<td>1546.3100</td>
<td>2400</td>
<td>16</td>
<td>116</td>
</tr>
<tr>
<td>TRS</td>
<td>TRS</td>
<td></td>
<td>User defined</td>
<td>63</td>
<td>99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRS</td>
<td>TRS</td>
<td></td>
<td>User defined</td>
<td>62</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRS</td>
<td>TRS</td>
<td></td>
<td>User defined</td>
<td>61</td>
<td>97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRS</td>
<td>TRS</td>
<td></td>
<td>User defined</td>
<td>60</td>
<td>96</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Examples

Enabling tracking of all RTX satellites:

$PASHS,LBN,USE,RTX,ON

Enabling tracking of all RTX satellites:

$PASHS,LBN,USE,RTX,ON

Tracking only satellite RTXNA:

$PASHS,LBN,USE,RTXNA,ON

Related Commands

$PASHQ,LBN
$PASHQ,PAR

LCK,MOD: Controlling Receiver Lock

Function

This command is used to allow, or not allow the receiver to be locked.
It is the password defined using $PASHS,ATH,PWD that must be entered when applying this command.

Command Format

Syntax

$PASHS,LCK,MOD,s1,s2[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
</table>
| s1 | Receiver lock control:
 - ON: To authorize receiver lock
 - OFF: To not authorize receiver lock | ON, OFF | OFF |
| s2 | Password; See $PASHS,ATH,PWD | 6 to 64 characters | trimble |
| *cc | Optional checksum | *00-*FF |

Example

Allowing the receiver to accept a lock command:

$PASHS,LCK,MOD,ON,trimble

Comments

- After the receiver has been locked, only the following commands can be applied to the board:
 - $PASHS,LCK,OFF
 - $PASHQ,RID
 - $PASHQ,RCP,OWN
 - $PASHQ,VERSION
 - $PASHQ,LCK
- The board firmware cannot be upgraded when receiver lock is authorized (even when the board is not currently locked).

Related Commands

$PASHS,LCK,ON
$PASHS,LCK,OFF
$PASHS,ATH,PWD

Query Command

$PASHQ,LCK

LCK,OFF: Unlocking the Receiver

Function

This command is used to unlock the receiver.
Command Format

Syntax

\$PASHS,LCK,OFF,s1[^cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Password; See $PASHS,ATH,PWD</td>
<td>6 to 64 characters</td>
<td>trimble</td>
</tr>
<tr>
<td>^cc</td>
<td>Optional checksum</td>
<td>^00^-FF</td>
<td></td>
</tr>
</tbody>
</table>

Example

Unlocking the receiver:

\$PASHS,LCK,MOD,OFF,trimble

Related Commands

- \$PASHS,LCK,MOD
- \$PASHS,LCK,ON
- \$PASHS,ATH,PWD

Query Command

\$PASHQ,LCK

LCK,ON: Locking the Receiver

Function

This command is used to lock the receiver. The prior condition for this command to be effective is the receiver should have been set to accept a locking command (see command \$PASHS,LCK,MOD).

When the receiver is locked, it won’t operate normally next time you power it on until you provide a password through command \$PASHS,LCK,OFF.

Command Format

Syntax

\$PASHS,LCK,ON,s1[^cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Password; See $PASHS,ATH,PWD</td>
<td>6 to 64 characters</td>
<td>trimble</td>
</tr>
<tr>
<td>^cc</td>
<td>Optional checksum</td>
<td>^00^-FF</td>
<td></td>
</tr>
</tbody>
</table>

Example

Locking the receiver:

\$PASHS,LCK,ON,trimble
Comments

• When locked, the receiver can only respond to the following commands:
 – $PASHS,LCK,OFF
 – $PASHQ,RID
 – $PASHQ,RCP,OWN
 – $PASHQ,VERSION
 – $PASHQ,LCK

• When the receiver is locked, there is no way you can upgrade or downgrade the receiver firmware.

Related Commands

$PASHS,LCK,MOD
$PASHS,LCK,OFF
$PASHS,ATH,PWD

Query Command

$PASHQ,LCK

LCS: Enabling/Disabling Use of Local Coordinate System

Function

This command is used to enable or disable the use of the local coordinate system in the receiver. Having the receiver using a local coordinate system requires that it receives RTCM 3.1 message type 1021-1028 from the base. Use exclusively NMEA output messages to get the position expressed in local coordinates.

Command Format Syntax

$PASHS,LCS,s1[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>ON: Local coordinate system used if RTCM 3.1 messages received (1021, 1022, 1023, 1025). OFF: Coordinate system used is WGS84. HOR: Horizontal coordinates are local ones. VER: Vertical coordinates are local ones.</td>
<td>ON, OFF, HOR, VER</td>
<td>OFF</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>00-FF</td>
<td>-</td>
</tr>
</tbody>
</table>

Example

Enabling the use of the local coordinate system in the receiver:
Related Commands

$PASHQ,LCS,ON*04

$PASHQ,LCS (query command)
$PASHQ,PAR

LOG,DEL: Deleting Log Files

Function
This command is used to delete log files.

Command Format Syntax

$PASHS,LOG,DEL,d[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>Index of the log file you want to delete. Use the $PASHQ,LOG, LST command to read the index associated with each existing log file. Use d=999 to delete all the log files, but the current one.</td>
<td>0 to no limit</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Example

Deleting all log files:

$PASHS,LOG,DEL,999*45

Related Commands

$PASHQ,LOG,LST (query command)
$PASHQ,LOG

LOG,PAR: Log File Settings

Function
This command is used to set the log file. A log file keeps track of the different connections performed in a day (one file created per day).

Command Format Syntax

$PASHS,LOG,PAR,s1,d2,d3[*cc]
Set Command Library

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Enabling/disabling the log file:</td>
<td>ON, OFF</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>• ON: Enable</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• OFF: Disable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d2</td>
<td>Maximum size, in Mbytes, allowed for a log file.</td>
<td>1-90</td>
<td>1</td>
</tr>
<tr>
<td>d3</td>
<td>Number of days during which log files are kept in memory. After this delay, they are automatically deleted.</td>
<td>1-100</td>
<td>10</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
<td></td>
</tr>
</tbody>
</table>

Example

Enabling the log file with a maximum size of 2 Mbytes and 10 days of backup:

$PASHS,LOG,PAR,ON,2,10*40

Related Commands

$PASHQ,LOG (query command)
$PASHS,LOG,DEL
$PASHS,LOG,LST

MDP: Choosing Communication Mode on Port D

Function

This command is used to set port D in the desired communication mode.

Command Format

Syntax

$PASHS,MDP,c1,s2[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>Port number (D)</td>
<td>D</td>
</tr>
<tr>
<td>s2</td>
<td>Select the desired communication mode:</td>
<td>232, CAN, I2C</td>
</tr>
<tr>
<td></td>
<td>• 232: RS232 serial port (default)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• CAN: CAN bus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• I2C: I2C port</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Example

Setting port D as an I2C port:
$PASHS,MDP,I2C*38

Related Commands
$PASHQ,MDP (query command)
$PASHS,PRT

MEM: Selecting Memory Device Used

Function
This command is used to select the memory used by the receiver for data storage.

Command Format Syntax
$PASHS,MEM,d[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>Memory used:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 0: Internal memory</td>
<td>0, 2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>• 2: USB memory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
<td></td>
</tr>
</tbody>
</table>

Example
Selecting internal memory as the memory used by the receiver:
$PASHS,MEM,0*2C

Related Commands
$PASHQ,MEM (query command)
$PASHS,FIL,DEL

MET,OWN - MET,REF: Entering Meteorological Parameters

Function
These two commands are used to enter the current values of three meteorological parameters respectively for the local
receiver, or for the reference receiver your board is working with.

Command Format

Syntax

$PASHS,MET,OWN,f1,f2,f3[^cc]

or

$PASHS,MET,REF,f1,f2,f3[,d4][^cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>f1</td>
<td>Local temperature, in °C</td>
<td>±100</td>
</tr>
<tr>
<td>f2</td>
<td>Local pressure, in mBar</td>
<td>0-1300</td>
</tr>
<tr>
<td>f3</td>
<td>Local relative humidity, %</td>
<td>0-100</td>
</tr>
<tr>
<td>d4</td>
<td>Preference</td>
<td>0, 1</td>
</tr>
<tr>
<td>^cc</td>
<td>Optional checksum</td>
<td>*00-FF</td>
</tr>
</tbody>
</table>

Comments

- As an RTK base, the board will insert its own f1 to f3 parameters into a meteo message such as ATM, ATR, MET.
- As an RTK rover, the board can use the meteo parameters corresponding to the local (OWN) and reference (REF) boards to adjust troposphere models.
- As an RTK rover, the board will use or ignore the meteo data entered locally for the reference receiver (REF), depending on the value given to d4 when running the $PASHS,MET,REF command:
 - d4=0: Meteo data entered locally for REF will be ignored if incoming reference data contain such data.
 - d4=1: Always used, regardless of what’s decoded from the incoming reference data.
- The default values of meteo parameters for both the local and reference receivers are set to “unknown” so that the PVT engine can internally apply its own defaults for these parameters. When a binary meteo message is generated, then these unknown default values will be mapped accordingly (i.e. they will be delivered as invalid values).

Example

Entering meteo values for the local receiver:

$PASHS,MET,OWN,+21,+1200,+51*50
MSG: Defining a User Message

Function
This command is used to define a user message to be generated “as is” or for insertion into one or more of the following standard messages:
- ATOM, ATR, UEM, if requested
- RTCM-2 message type 16 or 36
- RTCM-3 message type 1029
- CMR type 2 or 10

Any new MSG command you send to the receiver overwrites the user message previously defined through the same command.

Command Format
Syntax
$PASHS,MSG,[c1],s2[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
</table>
| c1 | Message interpreter (provision for future uses):
 • 0: ASCII message generated periodically. If c1 is omitted, this is interpreted as c1=0 |
| s2 | User message | 100 characters max. (receiver name) |
| *cc | Optional checksum | *00-*FF |

Example
Sending ASCII message “going to stop at 11pm” periodically:
$PASHS,MSG,0,going to stop at 11pm*5F

Comments
The port and output rate used to deliver the user message depends on the output message chosen for conveying this user message.

Warning! Only the first 90 characters from the user message will actually be transferred through RTCM-2 message types 16 and 36.
NME: Enabling/Disabling NMEA Messages

Function
This command is used to enable or disable NMEA messages and NMEA-like messages.

Command Format
Syntax
$PASHS[,d0],NME,s1,c2,s3[,f4][*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d0</td>
<td>Sensor ID</td>
<td>1, 2</td>
</tr>
<tr>
<td>s1</td>
<td>Data message type</td>
<td>See tables below</td>
</tr>
<tr>
<td>c2</td>
<td>Port routing the message:</td>
<td>A-D, F, I, M, P, Q (U)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s3</td>
<td>Enables (ON) or disables (OFF) the message. OFF by default.</td>
<td>ON, OFF</td>
</tr>
<tr>
<td>f4</td>
<td>Output rate, in seconds. Default is 1 second.</td>
<td>0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60, 120, 180, 240, 300, 360, 600, 720, 900, 1200, 1800, 3600</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

NMEA Messages

<table>
<thead>
<tr>
<th>Data</th>
<th>Description</th>
<th>Out Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTM</td>
<td>Datum Reference</td>
<td>1 s</td>
</tr>
<tr>
<td>GSV</td>
<td>GNSS satellite fault detection</td>
<td>See f4</td>
</tr>
<tr>
<td>GGA</td>
<td>Global Positioning System fix data</td>
<td>See f4</td>
</tr>
<tr>
<td>GLL</td>
<td>Geographic position - Latitude / Longitude</td>
<td>See f4</td>
</tr>
<tr>
<td>GMP</td>
<td>GNSS Map Projection Fix Data</td>
<td>See f4</td>
</tr>
<tr>
<td>GNS</td>
<td>GNSS Fix Data</td>
<td>See f4</td>
</tr>
<tr>
<td>GRS</td>
<td>GNSS range residual</td>
<td>See f4</td>
</tr>
<tr>
<td>GSA</td>
<td>GNSS DOP and active satellites</td>
<td>See f4</td>
</tr>
<tr>
<td>GST</td>
<td>GNSS pseudo-range error statistics</td>
<td>See f4</td>
</tr>
<tr>
<td>CSV</td>
<td>GNSS satellites in view</td>
<td>See f4</td>
</tr>
<tr>
<td>HDT</td>
<td>True heading</td>
<td>See f4</td>
</tr>
</tbody>
</table>
Set Command Library

NMEA-like messages:

<table>
<thead>
<tr>
<th>Data</th>
<th>Description</th>
<th>Out Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMC</td>
<td>Recommended minimum specific GNSS data</td>
<td>See f4</td>
</tr>
<tr>
<td>ROT</td>
<td>Attitude rate and accuracy</td>
<td>See f4</td>
</tr>
<tr>
<td>TRS</td>
<td>True heading and status</td>
<td>See f4</td>
</tr>
<tr>
<td>VDG</td>
<td>Course over ground and ground speed</td>
<td>See f4</td>
</tr>
<tr>
<td>ZDA</td>
<td>Time and date</td>
<td>See f4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data</th>
<th>Description</th>
<th>Out Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALR</td>
<td>Alarms (see $PASHS,NME_ALR)</td>
<td>No rate</td>
</tr>
<tr>
<td>ATT</td>
<td>True heading</td>
<td>See f4</td>
</tr>
<tr>
<td>AVR</td>
<td>Trimble "Time-Yaw-Tilt-Range" Message for Moving Baseline RTK</td>
<td>See f4</td>
</tr>
<tr>
<td>CAP</td>
<td>Received base antenna (see $PASHQ,ANP,RCV)</td>
<td>No rate</td>
</tr>
<tr>
<td>CPA</td>
<td>Received antenna height (see $PASHQ,CPD,ANT)</td>
<td>No rate</td>
</tr>
<tr>
<td>CPO</td>
<td>Received base position (see $PASHQ,CPD,POS)</td>
<td>No rate</td>
</tr>
<tr>
<td>DDM</td>
<td>Differential decoder message</td>
<td>No rate</td>
</tr>
<tr>
<td>DDS</td>
<td>Differential decoder status</td>
<td>1 s min.</td>
</tr>
<tr>
<td>GGK</td>
<td>Position (Trimble proprietary message). See Trimble documentation.</td>
<td>See f4</td>
</tr>
<tr>
<td>GGKX</td>
<td>Position & accuracy data (Trimble proprietary message). Message actually substitutes the combo GGA+GST. See Trimble documentation.</td>
<td>See f4</td>
</tr>
<tr>
<td>HPR</td>
<td>Attitude message</td>
<td>See f4</td>
</tr>
<tr>
<td>LTN</td>
<td>Latency</td>
<td>See f4</td>
</tr>
<tr>
<td>POS</td>
<td>Position</td>
<td>See f4</td>
</tr>
<tr>
<td>PSP</td>
<td>Received physical reference station position</td>
<td>No rate</td>
</tr>
<tr>
<td>PTT</td>
<td>PPS time tag</td>
<td>No rate</td>
</tr>
<tr>
<td>RCA</td>
<td>Received CMR type 2 attributes</td>
<td>No rate</td>
</tr>
<tr>
<td>RCS</td>
<td>Recording status</td>
<td>1 s min.</td>
</tr>
<tr>
<td>RSP</td>
<td>Received reference station position</td>
<td>No rate</td>
</tr>
<tr>
<td>SBD</td>
<td>Beidou satellite status</td>
<td>See f4</td>
</tr>
<tr>
<td>SGA</td>
<td>Galileo satellite status</td>
<td>See f4</td>
</tr>
<tr>
<td>SGL</td>
<td>Glonass satellite status</td>
<td>See f4</td>
</tr>
<tr>
<td>SLB</td>
<td>L-Band satellite status</td>
<td>See f4</td>
</tr>
<tr>
<td>SQZ</td>
<td>QZSS satellite status</td>
<td>See f4</td>
</tr>
<tr>
<td>SSB</td>
<td>SBAS satellite status</td>
<td>See f4</td>
</tr>
<tr>
<td>TEM</td>
<td>Board temperature</td>
<td>1 s min.</td>
</tr>
<tr>
<td>TTT</td>
<td>Event marker (see $PASHS,NME,TTT)</td>
<td>No rate</td>
</tr>
<tr>
<td>VCK</td>
<td>Vector and accuracy</td>
<td>See f4</td>
</tr>
<tr>
<td>VCT</td>
<td>Vector (with static base)</td>
<td>See f4</td>
</tr>
<tr>
<td>VEL</td>
<td>3D velocity and velocity accuracy</td>
<td></td>
</tr>
</tbody>
</table>
Example
Setting GGA message on Bluetooth port at 1-second output rate:
$PASHS,NME,GGA,C,ON,1*01

Relevant Query Command
$PASHQ,PAR (query command)
$PASHS,NME,ALL

NME,ALL: Disabling All NMEA and NMEA-Like Messages

Function
This command is used to disable all NMEA messages and NMEA-like messages currently enabled on the specified port.

Command Format Syntax
$PASHS,[d0],NME,ALL,c1,OFF[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d0</td>
<td>Sensor ID (antenna ID; 1: primary, 2: secondary); 1 if omitted.</td>
<td>1, 2</td>
</tr>
<tr>
<td>c1</td>
<td>Port routing the message:</td>
<td>A-D, F, I, P, Q, M, U</td>
</tr>
<tr>
<td></td>
<td>• A, B, D: Serial</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• C: USB serial</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• I, P, Q, F: TCP/IP stream</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• M: Internal memory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• U: USB memory</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Example
Disabling all NMEA and NMEA-like messages on port A:
$PASHS,NME,ALL,A,OFF*50

Related Commands
$PASHS,NME
NME,ALR: Setting an Alarm Message

Function
This command is used to output an alarm message on the specified port. The alarm level can be set to filter alarms.

Command Format
Syntax

```plaintext
$PASHS,NME,ALR,c1,s2,d3[*cc]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>Port routing the message:</td>
<td>A-D, F, I, P, Q, M, U</td>
</tr>
<tr>
<td></td>
<td>• A, B, D: Serial</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• C: USB serial</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• I, P, Q, F: TCP/IP stream</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• M: Internal memory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• U: USB memory</td>
<td></td>
</tr>
<tr>
<td>s2</td>
<td>ON/OFF control</td>
<td>ON, OFF</td>
</tr>
<tr>
<td>d3</td>
<td>Alarm level:</td>
<td>0-2</td>
</tr>
<tr>
<td></td>
<td>• 0: High, medium and low</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1: High and medium only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2: High only</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-FF</td>
</tr>
</tbody>
</table>

Response
The message returned by the receiver on applying the NME,ALR command is described below.

Syntax

```plaintext
$PASHR,ALR,d1,d2,c3,s4,d5,*cc
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Alarm code</td>
<td>0-255</td>
</tr>
<tr>
<td>d2</td>
<td>Alarm sub-code</td>
<td>0-255</td>
</tr>
<tr>
<td>c3</td>
<td>Port routing the message:</td>
<td>A-D, F, I, P, Q, M, U</td>
</tr>
<tr>
<td></td>
<td>• A, B, D: Serial</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• C: USB serial</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• I, P, Q, F: TCP/IP stream</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• M: Internal memory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• U: USB memory</td>
<td></td>
</tr>
<tr>
<td>s4</td>
<td>Source of alarm</td>
<td>BLUETOOTH, INPUT, MEMORY, MODEM, NETWORK, OTHER, POWER, PVT, RADIO, WIFI</td>
</tr>
<tr>
<td>d5</td>
<td>Alarm level:</td>
<td>0-2</td>
</tr>
<tr>
<td></td>
<td>• 0: High, medium and low</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1: High and medium only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2: High only</td>
<td></td>
</tr>
<tr>
<td>s6</td>
<td>Description</td>
<td>'00-FF'</td>
</tr>
<tr>
<td>ccc</td>
<td>Optional checksum</td>
<td>'00-FF'</td>
</tr>
</tbody>
</table>

Example

$PASHS,NME,ALR,C,ON

$PASHR,ALR,45,0,C,GSM,2,"PIN code invalid"*AC

Related Commands

$PASHS,NME

NME,TTT: Requesting Output of Event Marker

Function

This command is used to issue an event marker message. The GPS time is provided to within 1μs following the time of request.

This command should not be confused with $PASHS,NME where s1 would be given the value “TTT” (see this command for which event marker messages are requested by the event signal applied to the dedicated pin on the I/O connector and messages are output on the port specified by the command).
Set Command Library

Command Format

Syntax

$PASHS,NME,TTT,c1,s2[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>Port routing the message:</td>
<td>A-D, F, I, P, Q, M, U</td>
</tr>
<tr>
<td></td>
<td>• A, B, D: Serial port</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• C: USB serial port</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• I, P, Q, F: TCP/IP stream</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• M: Internal memory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• U: USB memory</td>
<td></td>
</tr>
<tr>
<td>s2</td>
<td>Enabling/disabling output</td>
<td>ON, OFF</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Response Format

Syntax

$PASHR,TTT,d1,m2*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Day in week. 1: Sunday; 7: Saturday</td>
<td>1-7</td>
</tr>
<tr>
<td>m2</td>
<td>GPS time tag, in hours, minutes, seconds</td>
<td>0-23:59:59.9999999999</td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Example

Requesting an event marker on port A:

$PASHS,NME,TTT,A,ON

$PASHR,TTT,3,18:01:33.1200417*04

Related Commands

$PASHS,NME

NPT: Defining How RTX and SBAS Positions are Tagged in POS Messages

Function

This command allows you to define a set of flags allowing you to tag the RTX and SBAS position solutions delivered in POS messages.
Command Format Syntax
$PASHS,NPT,d1,d2[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
</table>
| d1 | Tagging position solution in POS messages:
• If "0" (standard position type), possible tags are:
 – 1: SBAS or BeiDou Differential
 – 2: RTX Float or RTX Float dithered
 – 3: RTX Fixed or RTX Fixed dithered
• If "1" (specific position type), possible tags are:
 – 9: SBAS differential
 – 10: BeiDou Differential
 – 12: RTX Float
 – 13: RTX Fixed
 – 22: RTX Float dithered
 – 23: RTK Fixed dithered | 0,1 | 1 |
| d2 | This field is ignored. | | |
| *cc | Optional checksum | *00-*FF |

Example
Choosing to report standard position types in POS messages:
$PASHS,NPT,0

Related Commands
$PASHQ,NPT
$PASHQ,PAR

NTP: Controlling the Network Time Protocol Server

Function
This command is used to enable or disable the NTP (Network Time Protocol) server in the receiver.
The NTP server will respond to IP requests for GNSS time only after the receiver has been computing GNSS time.
The NTP server is useful to synchronize devices on a network.

Command Format Syntax
$PASHS,NTP,e[*cc]
Set Command Library

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>NTP server control:</td>
<td>ON, OFF</td>
</tr>
<tr>
<td></td>
<td>• ON: Enables NTP server</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• OFF: Disables NTP server</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>00-FF</td>
</tr>
</tbody>
</table>

Example

Starting the NTP server:

$PASHS,NTP,ON*12

Query Command

$PASHQ,NTP

NTR,LOD: Loading the NTRIP Caster Source Table

Function

This command is used to load the source table from the NTRIP caster. The receiver stores only one source table. If there is already one source table stored in the receiver when running the NTR,LOD command, this table will be overwritten.

Command Format Syntax

$PASHS,NTR,LOD[c1][*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>Internet port used to connect to the caster:</td>
<td>P, Q</td>
</tr>
<tr>
<td></td>
<td>• P: TCP/IP stream 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Q: TCP/IP stream 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If c1 is omitted, the port used is the port defined through the last $PASHS,NTR,PAR command run.</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>00-FF</td>
</tr>
</tbody>
</table>

Example

Loading the source table:

$PASHS,NTR,LOD
If the source table is downloaded successfully, the following response line will be returned:

$PASHR,NTR,OK*14

If the receiver fails to download the source table, the following response line will be returned:

$PASHR,NTR,FAIL*12

Related Commands

$PASHQ,NTR,TBL
$PASHS,NTR,PAR

NTR,MTP: Connecting Receiver to NTRIP Caster Mount Point

Function
This command allows you to connect the receiver to a NTRIP caster mount point.

Command Format

Syntax

$PASHS,NTR,MTP,s1[,c2][*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Name of the NTRIP mount point, or OFF command (ending the connection to the current mount point).</td>
<td>100 characters max., or OFF</td>
</tr>
</tbody>
</table>
| c2 | Internet port used to connect to the caster:
• P: TCP/IP stream 1
• Q: TCP/IP stream 2
If c2 is omitted, the port used is the port defined through the last $PASHS,NTR,PAR command run. | P, Q |
| *cc | Optional checksum | *00-*FF |

Example

Connecting to mount point MUWFO:

$PASHS,NTR,MTP,MUWFO*4D

If the connection is successful, the following response line will be returned:

$PASHR,NTR,OK*cc

If the connection failed, the following response line will be returned:

$PASHR,NTR,FAIL*12

241
NTR,PAR: NTRIP Settings

Function
This command allows you to set all the NTRIP parameters.

Command Format
Syntax
$PASHS,NTR,PAR[,ADD,s1][,PRT,d2][,LGN,s3][,PWD,s4][,TYP,d5][,IPP,c6][,ACN,d7][*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD,s1</td>
<td>Caster IP address or host name</td>
<td>32 characters max.</td>
</tr>
<tr>
<td>PRT,d2</td>
<td>Caster port number</td>
<td>0-65535</td>
</tr>
<tr>
<td>LGN,s3</td>
<td>Login</td>
<td>64 characters max.</td>
</tr>
<tr>
<td>PWD,s4</td>
<td>Password</td>
<td>32 characters max.</td>
</tr>
<tr>
<td>TYP,d5</td>
<td>Caster type:</td>
<td>0-1</td>
</tr>
<tr>
<td></td>
<td>• 0: Client</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1: Server</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2: Client NTRIP V2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 3: Server NTRIP V2</td>
<td></td>
</tr>
<tr>
<td>IPP,c6</td>
<td>Internet port used to connect to the caster:</td>
<td>P, Q</td>
</tr>
<tr>
<td></td>
<td>• P: TCP/IP stream 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Q: TCP/IP stream 2</td>
<td></td>
</tr>
<tr>
<td>ACN,d7</td>
<td>Auto-connection:</td>
<td>0, 1</td>
</tr>
<tr>
<td></td>
<td>• 0: After a power cycle, there won’t be an automatic NTRIP connection (default)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1: After a power cycle, the NTRIP connection will be restored</td>
<td></td>
</tr>
</tbody>
</table>

Example
Entering NTRIP settings for a client caster by specifying its IP address, port number, login and password:
$PASHS,NTR,PAR,ADD,192.34.76.1,PRT,2100,LGN,trimble,PWD,u6huz8,TYP,0,IPP,P,ACN,1

Comments
- P and Q are generic TCP/IP ports. By default, the board determines which physical port can be used (Modem, Wifi, Ethernet). You can however specify which physical
port should be used through command \$PASHS,TCP, RTE.

- The caster settings for each port (P and Q) are saved independently of each other meaning that several NTRIP connections can be used at the same time.
- The last \$PASHS,NTR,PAR command issued determines which of the two ports (P or Q) are used by default in commands \$PASHS,NTR,MTP and \$PASHS,NTR,LOD.

Related Commands

- \$PASHQ,NTR
- \$PASHQ,PAR
- \$PASHS,NTR,MTP
- \$PASHS,NTR,LOD

OBS: Setting Preference for GNSS Signals Tracking

Function

This command is used to choose how to best use the available GNSS signals. Changing the preference by running this command may cause the board to restart.

Command Format

Syntax

\$PASHS,OBS,c1[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>Tracks all GNSS signals (ALL), or only the best (OPT or LEG).</td>
<td>ALL, OPT, LEG</td>
<td>OPT</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
<td></td>
</tr>
</tbody>
</table>

Example

Enabling the tracking of all GNSS signals:

\$PASHS,OBS,ALL

Comments

- Choosing “OPT” does not mean disabling all the signals from a particular band, but simply tracking one band (the best) per GNSS band.
- For example, with GLONASS, choosing “ALL” means tracking L1CA, L2CA, L1P and L2P, while choosing “OPT” means tracking L1CA and L2CA only.
The “LEG” option is similar to the “OPT” option, except that only the L1P and L2P (not L2C) signals are output for all GPS satellites. This option is intended for users who are not comfortable with mixing L2P and L2C GPS observations.

If you choose “ALL” whatever the option you choose for OBS, the only way you can see all the tracked data is through one of these messages, internally defined as raw data messages raw and differential data messages delivering receiver observables to users are the following:
- ATM,ADM
- ATM,RNX,scn,0&999
- MSM 5&7
- ATM,PVT (tracking status and SNR/CTT only)

All other messages, defined internally as differential messages, such as those listed hereafter, will only generate the following reduced data subsets: OPT data subset if “OPT” or “ALL” option used, or LEG data subset if “LEG” option used.
- ATM,RNX (all scenarios except 0&999)
- RTCM-3.1
- RTCM-2.3
- RTCM-3.2 MSM 1&2&3&4&6
- CMR

Note 1: The legacy RTCM-2.3 and CMR differential messages do not make any distinction between data flagged GPS L2P(Y) and GPS L2C.

Note 2: SBAS observables are not provided in differential messages, but are however available in raw data messages.

Note 3: The baseline engine does not use SBAS ranging data. The only mode where SBAS ranging is used is internal heading in SNS,DUO mode.

Conversely, the following messages will deliver sets of observables corresponding to the “OPT” choice, regardless of whether you chose “ALL” or “OPT”:
- ATM,RNX (all scenarios except 0&999)
- RTCM-3.1
- RTCM-2.3
- RTCM-3.2 MSM 1&2&3&4&6
- CMR
• The tracking/usage status reported in ATM,PVT and ATM,RNX (except for scenario 999) should be the same. There may be a difference however because ATM,RNX scenarios may additionally mask some signals originally presented in ATM,PVT.
Reminder: The tracking/usage status includes such information as tracked/used signals, SNR, Cumulative Tracking Time and warnings.

• **Important!** Switching from SOL (single) to Duo mode (see SNS command) will result in resetting the OBS command to option “OPT”. Conversely, an attempt to set the “ALL” option with the OBS command will always fail if the board is currently in DUO mode.

OCC: Writing Occupation Data to Raw Data File

Function
This command is used to write information about the current occupation to the raw data file being logged. Every time this command is issued, its content is duplicated in the ATM,ATR,OCC message (if requested on a port).

Command Format Syntax

\[$\text{PASHS,OCC,}d1,d2,s3[,s4][^{*cc}]$\]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d1$</td>
<td>Occupation type:</td>
<td>0-3</td>
</tr>
<tr>
<td></td>
<td>• 0: Static</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1: Quasi-static</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2: Dynamic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 3: Event</td>
<td></td>
</tr>
<tr>
<td>$d2$</td>
<td>Occupation event:</td>
<td>0-1</td>
</tr>
<tr>
<td></td>
<td>• 0: Begin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1: End</td>
<td></td>
</tr>
<tr>
<td>$s3$</td>
<td>Occupation name</td>
<td>255 characters max.</td>
</tr>
<tr>
<td>$s4$</td>
<td>Occupation description</td>
<td>255 characters max.</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Examples

Starting a static occupation on point “SITE01”:

\[$\text{PASHS,OCC,}0,0,s3[,]s4[^{*cc}]$\]

Ending the static occupation on point “SITE01”:

\[$\text{PASHS,OCC,}1,0,s3[,]s4[^{*cc}]$\]
Related Commands

- $PASHQ,OCC
- $PASHS,REC
- $PASHS,ATM

OPTION: Receiver Firmware Options

Function

This command is used to install the receiver firmware options that are purchased at a later date. Options purchased at the time of receiver purchase are factory pre-loaded.

Command Format

Syntax

```
$PASHS,OPTION,s1,h2[*cc]
```

Disabling all options and resetting/rebooting the receiver:

```
$PASHS,OPTION,ALL,0[*cc]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Option ID</td>
<td>(See table below)</td>
</tr>
<tr>
<td>h2</td>
<td>Unlock code</td>
<td>13 characters max.</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Option ID

<table>
<thead>
<tr>
<th>Option ID</th>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>@1</td>
<td>GEOFENCING_WW</td>
<td>Worldwide enabled receiver</td>
</tr>
<tr>
<td>@2</td>
<td>GEOFENCING_CHINA</td>
<td>China-only enabled receiver</td>
</tr>
<tr>
<td>@3</td>
<td>GEOFENCING_JAPAN</td>
<td>Japan-only enabled receiver</td>
</tr>
<tr>
<td>@4</td>
<td>GEOFENCING_BRAZIL</td>
<td>Brazil-only enabled receiver</td>
</tr>
<tr>
<td>@5</td>
<td>GEOFENCING_N_AMERICA</td>
<td>North-America-only enabled receiver</td>
</tr>
<tr>
<td>@6</td>
<td>GEOFENCING_L_AMERICA</td>
<td>Latin-America-only enabled receiver</td>
</tr>
<tr>
<td>@7</td>
<td>GEOFENCING_RUSSIA</td>
<td>Russia-only enabled receiver</td>
</tr>
<tr>
<td>@8</td>
<td>GEOFENCING_INDIA</td>
<td>India-only enabled receiver</td>
</tr>
<tr>
<td>@9</td>
<td>GEOFENCING_TURKEY</td>
<td>Turkey-only-enabled receiver</td>
</tr>
<tr>
<td>2</td>
<td>2HZ</td>
<td>Enables output rate up to 2 Hz (for position/raw data)</td>
</tr>
<tr>
<td>4</td>
<td>ViewPoint RTX</td>
<td>RTX L1-only mode</td>
</tr>
<tr>
<td>Option ID</td>
<td>Label</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>5</td>
<td>5HZ</td>
<td>Enables update rate up to 5 Hz for position and raw data. With this option enabled, when using $PASHS,POP to set the internal update rate, remember only “POP,1” and “POP,5” are allowed, not “POP,2”.</td>
</tr>
<tr>
<td>6</td>
<td>10HZ</td>
<td>Enables update rate up to 10 Hz for position and raw data</td>
</tr>
<tr>
<td>8</td>
<td>50HZ</td>
<td>Enables update rate up to 50 Hz for position and raw data</td>
</tr>
<tr>
<td>9</td>
<td>FieldPoint RTX</td>
<td>CYT degraded version. Dominates RangePoint RTX</td>
</tr>
<tr>
<td>B</td>
<td>BEIDOU</td>
<td>BEIDOU satellites tracking</td>
</tr>
<tr>
<td>C</td>
<td>CPRTX</td>
<td>Enables Trimble CenterPoint RTX</td>
</tr>
<tr>
<td>C</td>
<td>CASTER</td>
<td>Embedded NTRIP caster</td>
</tr>
<tr>
<td>D</td>
<td>DUO</td>
<td>Allows use of dual-sensor mode, raw data output from both sensors, internal heading between the two antennas, or two independent standalone/DGPS/SBAS position for each antenna. External heading as well.</td>
</tr>
<tr>
<td>E</td>
<td>ATTITUDE</td>
<td>Same as D option. Additionally, enables full-attitude engine with up to 4 sources of raw data (up to 4 antennas) regardless of their assignment across two or more boards. Computing external heading also possible.</td>
</tr>
<tr>
<td>G</td>
<td>GLONASS</td>
<td>GLONASS satellites tracking</td>
</tr>
<tr>
<td>I</td>
<td>RAIM</td>
<td>Enables receiver to output RAIM-related messages</td>
</tr>
<tr>
<td>K</td>
<td>RTKBASE</td>
<td>Enables the receiver to generate differential messages: • RTCM 2.3 • RTCM 3.0 • CMR / CMR+ • ATOM See NOTE 3.</td>
</tr>
<tr>
<td>L</td>
<td>LBAND</td>
<td>Enables L-band reception</td>
</tr>
<tr>
<td>N</td>
<td>GPS+SBAS+QZSS satellites tracking</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>GALILEO</td>
<td>GALILEO satellites tracking</td>
</tr>
</tbody>
</table>
NOTE 1: If option [J] is installed, then using the board as RTK rover is possible with naturally achievable accuracy.

NOTE 2: If there is no [F] or [J] option installed, the board can receive any set of corrections (ATOM, RTCM, CMR, etc.) but output only DGPS/DGNSS decimeter-level position by using/applying the L1 C/A code measurements portion from these correcting data.

Adding the [F] option gives the board the ability to run in Flying RTK (position and vector) using additionally carrier phase data from multiple signals.

Adding the [J] option gives the board the ability to run in full RTK (position and vector), up to fixing carrier ambiguity to integer. No dithering is applied with [J] installed.

Option [J] always dominates [F]. An RTK rover using the CMRx protocol will not be able to start with option [F]: option [J] will be required to make it work.

NOTE 3: If option [K] is missing, the board cannot generate most of the RTCM2, RTCM3, CMR and ATOM,RNX messages. The following exceptions are possible on each port (with possible limitations if [A] and [V] are not installed):
- RTCM-2.3 type 1,3,9,31
- RTCM-3.2 type 1005,1006,1071,1081,1091,1101,1111,1211

Once option [K] has been installed, all differential and ATM,RNX messages can be generated on each port.

<table>
<thead>
<tr>
<th>Option ID</th>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>RPRTX</td>
<td>Enables Trimble RangePoint RTX</td>
</tr>
<tr>
<td>R</td>
<td>RECORD</td>
<td>Enables data recording in memory. ATL LOG data can be recorded without this option installed.</td>
</tr>
<tr>
<td>W</td>
<td>20HZ</td>
<td>Enables output rate up to 20 Hz (for position/raw data)</td>
</tr>
<tr>
<td>W1</td>
<td>WARRANTY 1 YEAR</td>
<td>Extends warranty period by one year. See NOTE 4.</td>
</tr>
<tr>
<td>W2</td>
<td>WARRANTY 2 YEAR</td>
<td>Extends warranty period by two years. See NOTE 4.</td>
</tr>
<tr>
<td>X</td>
<td>L1 TRACKING</td>
<td>Enables tracking of the following signals:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• GPS, QZSS, SBAS L1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• GLONASS G1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• GALILEO E1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• BEIDOU B1 (phase 2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This option is ALWAYS set.</td>
</tr>
<tr>
<td>Y</td>
<td>L2 TRACKING</td>
<td>Enables tracking of the following signals:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• GPS, QZSS L2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• GLONASS G2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• GALILEO E5b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• BEIDOU B2</td>
</tr>
</tbody>
</table>
NOTE 4: Options [W1] and [W2] modify the expiration date in the board. The unlock code (or password) is computed as a one-month temporary option using the current expiration date as the start date.

Comments

- Firmware options may be activated for limited periods of time, depending on the type of unlock code generated for each of them (WARNING: in MB-Two, only firmware options tied to Trimble RTX may be made temporary).
- Options [D] and [E] are totally independent of options [K] [F] and [J].
 When option [D] is installed in a board, the second antenna sensor can be turned on and the board can compute heading between the two antennas. But the board cannot compute either heading implying the processing of data external to the board, or attitude using external data or even data from the other internal sensor.
 Option [D] is a subset of option [E], so you don’t need to install option [D] if option [E] is already installed.
- Option [E]: When this option is installed, compared to option [D], you can additionally compute heading or attitude in which the board’s second antenna sensor may be involved, as well as data external to the board, provided these data are in ATM,RNX,scn,0 (or 204) format.
- If none of the update rate options are installed ([2], [5], [6], [8], [W]), the board will output data at up to 1 Hz speed.

Example

Enabling the [K] option:
$PASHS,OPTION,K,878A887*cc

Related Commands

$PASHQ,OPTION (query command)
$PASHQ,RID

OUT: Suspending/Resuming Message Output

Function

This command is used to suspend or resume the output of the requested periodic messages (those requested using $PASHS commands) on the specified port.
Command Format

Syntax

$PASHS,OUT,c1,s2[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
</table>
| c1 | ID of port on which to suspend or resume the output of periodic messages:
 - A, B, D: Serial port
 - C: USB serial port
 - I, P, Q, F: TCP/IP stream | A-D, F, I, P, Q |
| s2 | Suspend (OFF) or resume (ON) message output control | ON, OFF |
| *cc | Optional checksum | *00-*FF |

Comments

- Suspending all periodic messages on a given port implies that the receiver “keeps in mind” all the settings of these messages. When later you apply the “ON” command, the receiver will resume the output of these messages as if nothing had happened in the meantime.
- With all the periodic messages suspended on a given port, you are still allowed to modify the settings of these suspended messages, or even add new ones.
- With all the periodic messages suspended on a given port, you are still allowed to apply $PASHQ commands on this port to get $PASHR responses from the receiver through the same port.

Example

Suspending all messages on port A:

$PASHS,OUT,A,OFF*35

Related Commands

$PASHQ,OUT (query command)
$PASHS,NME
$PASHS,ATM

OUT,ALL: Disabling All Periodic Messages

Function

This command is used to disable all the periodic messages programmed to be output on the specified port. Periodic
messages are all those programmed using $PASHS commands.

Command Format

Syntax

$PASHS,OUT,ALL,c1,OFF[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>ID of port on which to disable the output of periodic messages:</td>
<td>A-D, F, I, P, Q, M, U</td>
</tr>
<tr>
<td></td>
<td>• A, B, D: Serial port</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• C: USB serial port</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• I, P, Q, F: TCP/IP stream</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• M: Internal memory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• U: USB memory</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>00-FF</td>
</tr>
</tbody>
</table>

Example

Disabling all periodic messages on port A:

$PASHS,OUT,ALL,A,OFF*58

Related Commands

$PASHS,NME

$PASHS,ATM

OUT,DIF,OFF: Disabling All Differential Messages

Function

This command is used to disable the output of all differential messages on all ports.

Using this command is equivalent to using this series of commands, applied to the receiver to disable all differential messages successively on ports A to D, F, I, P and Q:

$PASHS,RT3,ALL,c,OFF

$PASHS,RT2,ALL,c,OFF

$PASHS,CMR,ALL,c,OFF

$PASHS,ATM,ALL,c,OFF

Command Format

Syntax

$PASHS,OUT,DIF,OFF[*cc]
Parameters
None.

PAR, LOD: Configuring the Receiver From a PAR File

Function
This command configures the receiver in one step, using the data stored in the specified PAR file. The PAR file may have been saved previously to the receiver's internal memory or on a USB key.

Command Format Syntax
$PASHS,PAR,LOD[,d1][,s2][*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Memory where the PAR file can be found: • 0: Internal memory (NAND Flash) • 2: USB key</td>
<td>0, 2</td>
<td>2</td>
</tr>
<tr>
<td>s2</td>
<td>File name (MB2_XXXXX_dddhhmmss.par) where: • XXXXX: Last 5 digits from serial number • ddd: Day number (1..366) • hhmmss: Time</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Optional checksum *00-*FF

Examples
Changing the receiver configuration by loading the PAR file saved on the USB memory:
$PASHS,PAR,LOD*5D

Changing the receiver configuration by loading the PAR file named "MB2_95685_145084518.par" located in the internal memory:
$PASHS,PAR,LOD,0,MB2_95685_145084518.par*1A
Relevant Query
Command
See also

PAR,SAV: Saving the Receiver Configuration To a PAR File

Function
This command is used to save the current receiver configuration to a PAR file.

Command Format

Syntax
$PASHS,PAR,SAV[,d1][*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Memory where the PAR file will be written:</td>
<td>0, 2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>• 0: Internal memory (NAND Flash)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2: USB key</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If d1 is omitted, the receiver will assume that the PAR file should be saved to the USB key.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*cc Optional checksum 00-FF

Comments
The command will create a PAR file named as follows:
MB2_SSSSS_dddhhmmss.par

Where:
• SSSSS: Last 5 digits from receiver serial number
• ddd: Day number (1.. 366)
• hhmmss: Current time

The command will be rejected ($PASHR,NAK) in the following cases:
• No USB key detected and d1=2 or is omitted
• Not enough space available on the specified memory
• The PAR file already exists.

Example
Saving the receiver configuration to the USB key:
$PASHS,PAR,SAV*SE
Relevant Query
Command
None.

See also $PASH,PAR,LOD

PEM: Setting the Position Elevation Mask

Function This command is used to set the elevation mask used in the position processing. This value of elevation mask applies to all PVT engines, to all sensors, in all positioning modes, and to all satellite observations.

Command Format Syntax
$PASH,PEM,d1[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Elevation mask angle, in degrees</td>
<td>0-30°</td>
<td>5</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
<td></td>
</tr>
</tbody>
</table>

Example
Setting the elevation mask for position processing to 15 degrees:
$PASH,PEM,15*05

Related Commands $PASHQ,PEM
$PASHQ,PAR
$PASHS,ELM

PGN: Enabling/Disabling CAN-NMEA 2000 Messages

Function This command is used to enable or disable NMEA 2000 messages on the CAN bus.

Command Format Syntax
$PASH[d0],PGN,s1,c2,s3 [,f4][*cc]

254
Set Command Library

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>d0</td>
<td>Sensor ID (sensor 1 if d0 missing)</td>
<td>1, 2</td>
<td>-</td>
</tr>
<tr>
<td>s1</td>
<td>GSOF message type</td>
<td>See table below.</td>
<td>-</td>
</tr>
<tr>
<td>c2</td>
<td>Output port:</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>• CAN port: V</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>s3</td>
<td>Enabling/disabling command</td>
<td>ON, OFF</td>
<td>-</td>
</tr>
<tr>
<td>f4</td>
<td>Output rate, in seconds</td>
<td>0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60, 120, 180, 240, 300, 360, 600, 720, 900, 1200, 1800, 3600</td>
<td>See table below.</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum *00-*FF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Supported PGN messages:

<table>
<thead>
<tr>
<th>Message Type</th>
<th>Description</th>
<th>Default Rate (s)</th>
<th>Minimum Rate (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>126992</td>
<td>System Time</td>
<td>1</td>
<td>0.01</td>
</tr>
<tr>
<td>129023</td>
<td>Position, Rapid Update</td>
<td>0.1</td>
<td>0.01</td>
</tr>
<tr>
<td>129026</td>
<td>COG & SOG, Rapid Update</td>
<td>0.2</td>
<td>0.01</td>
</tr>
<tr>
<td>129027</td>
<td>Position Delta, High Precision Rapid Update</td>
<td>0.1</td>
<td>0.01</td>
</tr>
<tr>
<td>129028</td>
<td>Altitude Delta, High Precision Rapid Update</td>
<td>0.1</td>
<td>0.01</td>
</tr>
<tr>
<td>129029</td>
<td>GNSS Position Data</td>
<td>1</td>
<td>0.01</td>
</tr>
<tr>
<td>129540</td>
<td>GNSS Sats in View</td>
<td>1</td>
<td>0.01</td>
</tr>
<tr>
<td>129542</td>
<td>GNSS Pseudorange Noise Statistics</td>
<td>1</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Example

Enabling “System Time” message at 1 second:

$PASHS.PGN,126992,V,ON,1

Related Commands

$PASHQ.OUT,PGN - $PASHQ,PAR (query commands)
$PASHS,PGN,ALL

PGN,ALL: Disabling all CAN-NMEA 2000 Messages

Function

This command is used to disable all the NMEA 2000 messages currently delivered on the CAN port.

255
Command Format Syntax
$PASHS[d0],PGN,ALL,c1,OFF[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>d0</td>
<td>Sensor ID ("1" if d0 missing)</td>
<td>1, 2</td>
<td>1</td>
</tr>
</tbody>
</table>
| c1 | Output port delivering NMEA 2000 messages:
| | - CAN port: V | V | - |
| *cc | Optional checksum | "00"-"FF" | |

Example
Disabling all NMEA 2000 messages:
$PASHS,PGN,ALL,V,OFF

Related Commands $PASHS,PGN

PGS: Defining the Primary GNSS System

Function
This command is used to define the primary GNSS system used in the receiver.
The choice of a primary system impacts the following:
- Time tagging of some messages
- Use of a default position datum (e.g. WGS-84 for GPS, PZ-90.02 for GLONASS, CGCS2000 for BeiDou)
- Reference time scale for reported clock estimates. More information on this point in the ATOM Reference Manual.

Command Format Syntax
$PASHS,PGS,s1[*cc]
Set Command Library

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Desired primary GNSS system:</td>
<td>GPS, GLO, BDS, GAL</td>
<td>GPS</td>
</tr>
<tr>
<td></td>
<td>• "GPS": GPS system</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• "GLO": GLONASS system</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• "BDS": BEIDOU system</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• "GAL": Galileo system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
<td></td>
</tr>
</tbody>
</table>

Comments

- The choice of a primary GNSS system has no impact whatsoever on the internal algorithms used by the receiver. For example, the way channels are assigned for satellite tracking or the way observables from different systems are weighted in the PVT solution are not impacted by this choice.

- The choice of a primary system is an “absolute” setting. That choice is indeed totally independent of the receiver configuration parameters. It remains valid even when the chosen primary system is NOT currently tracked. In this case however, you may expect some approximations due to the use of a priori information about time/datum differences between the different GNSS’s.

 For example, GPS can be designated as the primary system, but may be disabled for tracking using the \$PASHS,GPS,OFF command. In this case, the reported values of time tag and clock offset parameters will only use a priori information about GPS-GLONASS differences.

- The ATM,RNX and ATM,PVT messages are affected when you change the primary GNSS system, owing to a different time tag used. On the other hand, NMEA time tags are not affected as they always refer to UTC time.

- Additional details about the receiver-clock-estimate and clock-steering procedures when the primary GNSS system is GLONASS or BeiDou can be found in the ATOM Reference Manual.

- Changing the primary GNSS system causes the board to be restarted. The restart condition is similar to running the \$PASHS,INI,0 command.

- Not all differential protocols can be used when the primary GNSS system is GLONASS or BeiDou. In either case, better use the ATOM or RTCM3.2 data format.

- The messages affected by this command are ATOM RNX, ATOM PVT, all NMEA messages and all reference positions.
Set Command Library

in differential messages generated for a given primary GNSS system.

- When specifying the position of the receiver through external means (i.e. by using the \$PASHS,POS command), you should always keep in mind that it should be in agreement with the currently selected primary system (i.e. expressed on the same datum).

- GPS is the default primary GNSS system. That’s why running \$PASHS,PGS,GLO is recommended when the GPS option is not installed, otherwise raw data cannot be generated (because of unknown GPS time).

- About GNSS time validity: Some GNSS observables may be delivered with invalid time. Internally, the time status for each GNSS may range from INVALID to VALID with many intermediate states (e.g. SET_BY_ANOTHER_SYS; see table below, statuses listed from fully valid to fully invalid).

<table>
<thead>
<tr>
<th>Time Status Code</th>
<th>Description</th>
<th>Comment on Time Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>TIMEFACE_TIME_VALID</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>TIMEFACE_TIME_FIRST_CORR</td>
<td>Invalid</td>
</tr>
<tr>
<td>2</td>
<td>TIMEFACE_TIME_PRE_FIRST_CORR</td>
<td>Invalid</td>
</tr>
<tr>
<td>3</td>
<td>TIMEFACE_TIME_RTC_HOT</td>
<td>Invalid</td>
</tr>
<tr>
<td>4</td>
<td>TIMEFACE_TIME_SET_BY_ANOTHER_SYS</td>
<td>Invalid</td>
</tr>
<tr>
<td>5</td>
<td>TIMEFACE_TIME_RTC</td>
<td>Invalid</td>
</tr>
<tr>
<td>6</td>
<td>TIMEFACE_TIME_NOT_CONFIRMED</td>
<td>Invalid</td>
</tr>
<tr>
<td>7</td>
<td>TIMEFACE_TIME_SET_BY_USER</td>
<td>Invalid</td>
</tr>
<tr>
<td>8</td>
<td>TIMEFACE_TIME_NOT_SET</td>
<td>Invalid</td>
</tr>
<tr>
<td>9-15</td>
<td>Reserved</td>
<td>Invalid, if any</td>
</tr>
</tbody>
</table>

Depending on their current time status, GNSS observables may be processed differently:

- ATOM RNX message scenario 0 (default raw data format) will be output only if the relevant time status is equal to or better than SET_BY_ANOTHER_SYS.
- ATOM RNX messages in all other scenarios will be output only if time is VALID.
- Internally, observables will be used in computing position only if their time status is better than SET_BY_ANOTHER_SYS.

NOTE: There are no messages available to check the time status of each GNSS.
Example
Choosing GLONASS as the primary GNSS system:
$PASHS,PGS,GLO*59

Related Commands
$PASHQ,PGS (query command)
$PASHQ,PAR

PHE: Setting the Active Edge of the Event Marker Pulse

Function
This command is used to set the active edge (rising or falling) of the event marker pulse used in photogrammetry time-tagging.

Command Format
Syntax
$PASHS,PHE,c1[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>Active edge code:</td>
<td>R, F</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>• “R” for rising edge</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• “F” for falling edge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>00-FF</td>
<td></td>
</tr>
</tbody>
</table>

Example
Making the falling edge active:
$PASHS,PHE,F*42

Related Commands
$PASHQ,PHE
PIN: Assigning Function to Programmable Pin on I/O Connector

Function
This command is used to assign a specific function to the programmable pin on the board’s I/O connector.

Command Format
Syntax
$PASHS,PIN,d1,s2,d3[^cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Programmable pin ID:</td>
<td>0 or 1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>• 0: MFO1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1: MFO2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s2</td>
<td>Function:</td>
<td>OFF, PAV, RSP, LED, BDL, GPO</td>
<td>LED (red LED for MFO1, green LED for MFO2)</td>
</tr>
<tr>
<td></td>
<td>• OFF: no function assigned</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• PAV: Position available (see comment 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• RSP: Radar simulated pulse (see comment 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• LED: LED signal output</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• BDL: Trimble BDxxx LED signal output (see Trimble BDxxx LED Functionality and Operation on page 263)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• GPO: General Purpose Output</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example

Assigning the PAV function to the programmable pin and asking for a low-level signal on that pin after 60 seconds of position unavailability:

$PASHS,PIN,0,PAV,60*7F

Comment 1. When the PAV function is assigned to the pin, a low level will occur on the pin in the following cases:

- Immediately after the $PASHS,PIN,d1,PAV command has been executed and the position has not been computed yet at that time.
- If for any reason, the position has not been computed for more than the time specified as d3.
- After running the $PASHS,INI,x,y,0 or $PASHS,INI,x,y,5 command.
- After running the POP and <GNS>,USE commands following a re-start of the board.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>d3</td>
<td>Depends on s2 value:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• s2=OFF: d3 should be omitted</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• s2=PAV: d3 is the number of consecutive seconds while position is not computed that causes the signal on the pin to switch to low level.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• s2=RSP: d3 should be set to "1" to make Radar Simulated Pulse output available on the pin.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• s2=LED: Defines the LED used. "1" for red LED; "2" for green LED.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• s2=BDL: d3=1 means sat tracking status is output; d3=2 means RTK link status is output; d3=3 means power status is output. If d3 is omitted or empty, then sat tracking status is output for MFO1 and RTK link status is output for MFO2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• s2=GPO: d3=0 means active logic level is "0"; d3=1 means active logic level is "1".</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Omitted</td>
<td>1-3600</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 or 2</td>
<td>1-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 or 1</td>
<td>0-1</td>
<td></td>
</tr>
</tbody>
</table>

*cc Optional checksum 00-FF
High level is restored on the pin right after the board has re-started computing the position.

2. After the $PASHS,P1N,d1,RSP,1$ command has been accepted, and if the ground speed is within the range 0.8 to 322 km/hr, an LV-TTL pulse signal with a 50% duty cycle is made available on the pin. The frequency conversion is then 94 Hz/(m/s).

If the ground speed is out of the range 0.8 to 322 km/hr, the pin level is kept at a high level.
Trimble BDxxx LED Functionality and Operation

The MFO1 and MFO2 pins of MB-Two board can be programmed to drive external LEDs similar to Trimble BDxxx boards LEDs (see $PASHS,PIN command description).

The initial boot-up sequence for a receiver lights all the three LEDs for about three seconds followed by a brief duration where all three LEDs are off. Thereafter, use the following table to confirm tracking of satellite signals or for basic troubleshooting.

For single antenna configurations, the following LED patterns apply:

<table>
<thead>
<tr>
<th>Power LED</th>
<th>RTK Corrections LED</th>
<th>SV Tracking LED</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>On (continuous)</td>
<td>Off</td>
<td>Off</td>
<td>The receiver is turned on, but not tracking satellites.</td>
</tr>
<tr>
<td>On (continuous)</td>
<td>Off</td>
<td>Blinking at 1 Hz</td>
<td>The receiver is tracking satellites, but no incoming RTK corrections are being received.</td>
</tr>
<tr>
<td>On (continuous)</td>
<td>Blinking at 1 Hz</td>
<td>Blinking at 1 Hz</td>
<td>The receiver is tracking satellites and receiving incoming RTK corrections.</td>
</tr>
<tr>
<td>On (continuous)</td>
<td>Off or blinking (receiving corrections)</td>
<td>Blinking at 5 Hz for a short while</td>
<td>Occurs after a power boot sequence when the receiver is tracking less than 5 satellites and searching for more satellites.</td>
</tr>
<tr>
<td>On (continuous)</td>
<td>Blinking at 1 Hz</td>
<td>Off</td>
<td>The receiver is receiving incoming RTK corrections, but not tracking satellites.</td>
</tr>
<tr>
<td>On (continuous)</td>
<td>Blinking at 5 Hz</td>
<td>Blinking at 1 Hz</td>
<td>The receiver is receiving Moving Base RTK corrections at 5 Hz.</td>
</tr>
<tr>
<td>On (continuous)</td>
<td>On (continuous)</td>
<td>Blinking at 1 Hz</td>
<td>The receiver is receiving Moving Base RTK corrections at 10 or 20 Hz (the RTK LED turns off for 100 ms if a correction is lost).</td>
</tr>
<tr>
<td>On (continuous)</td>
<td>On, blinking off briefly at 1 Hz</td>
<td>Blinking at 1 Hz</td>
<td>The receiver is in a base station mode, tracking satellites and transmitting RTK corrections.</td>
</tr>
</tbody>
</table>
For two antenna configurations, the following LED patterns apply:

<table>
<thead>
<tr>
<th>Power LED</th>
<th>RTK Corrections LED</th>
<th>SV Tracking LED</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>On (continuous)</td>
<td>Off</td>
<td>Off</td>
<td>The receiver is turned on, but not tracking satellites.</td>
</tr>
<tr>
<td>On (continuous)</td>
<td>Off</td>
<td>Blinking at 1 Hz then a high-frequency blinking burst every 5 seconds</td>
<td>The receiver is tracking satellites on the position antenna and the vector antenna. However, no incoming RTK corrections are being received.</td>
</tr>
<tr>
<td>On (continuous)</td>
<td>Blinking at 1 Hz</td>
<td>Blinking at 1 Hz then a high-frequency blinking burst every 5 seconds</td>
<td>The receiver is tracking satellites on the position antenna and the vector antenna, and incoming RTK corrections are being received.</td>
</tr>
<tr>
<td>On (continuous)</td>
<td>Off or blinking (receiving corrections)</td>
<td>Blinking at 5 Hz for a short while</td>
<td>Occurs after a power boot sequence when the position antenna is searching for satellites.</td>
</tr>
<tr>
<td>On (continuous)</td>
<td>Off or blinking (receiving corrections)</td>
<td>Off, then a high-frequency blinking burst every 5 seconds</td>
<td>The receiver is tracking satellites on the vector antenna only. The position antenna is not tracking.</td>
</tr>
<tr>
<td>On (continuous)</td>
<td>Blinking at 1 Hz</td>
<td>Off</td>
<td>The receiver is receiving incoming RTK corrections, but not tracking satellites on either the position or vector antenna.</td>
</tr>
<tr>
<td>On (continuous)</td>
<td>Blinking at 5 Hz</td>
<td>Blinking at 1 Hz then a high-frequency blinking burst every 5 seconds</td>
<td>The position antenna is receiving Moving Base RTK corrections at 5 Hz.</td>
</tr>
<tr>
<td>On (continuous)</td>
<td>Continuously on</td>
<td>Blinking at 1 Hz then a high-frequency blinking burst every 5 seconds</td>
<td>The position antenna is receiving Moving Base RTK corrections at 10 or 20 Hz (the RTK LED turns off for 100 ms if a correction is lost).</td>
</tr>
<tr>
<td>On (continuous)</td>
<td>On, blinking off briefly at 1 Hz</td>
<td>Blinking at 1 Hz then a high-frequency blinking burst every 5 seconds</td>
<td>The position antenna is in a base station mode, tracking satellites and transmitting RTK corrections.</td>
</tr>
</tbody>
</table>

POP: Setting Internal Update Rates for Measurements and PVT

Function This command allows you to set the update rate used internally in the processing of measurements and position.

Command Format Syntax

```
$PASHS,POP,d1[*cc]
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Internal update rate, in Hz, for measurements</td>
<td>1, 2, 5, 10, 20, 50 with option [8]</td>
<td>Firmware option dependent (see below)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1, 2, 5, 10, 20 with option [W]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1, 2, 5 with option [6]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1, 2, 5 with option [5]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1, 2 with option [2]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Else 1 Hz</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
<td></td>
</tr>
</tbody>
</table>

Example

Setting both update rates to 20 Hz:

$PASHS,POP,20*14

Comments

- Changing the POP setting causes all the update rates of the output messages to be reset to their default values. It is therefore recommended to set these update rates only after having run the $PASHS,POP command.
- The default POP setting depends on which firmware option has been installed:
 - Default is “10 Hz” if option [8], [W] or [6] is enabled
 - Default is “5 Hz” if option [5] is enabled
 - Default is “2 Hz” if option [2] is enabled
 - Default is “1 Hz” otherwise

Related Commands

$PASHQ,POP (query command)
$PASHS,NME
$PASHS,ATM

POS: Setting the Antenna Position

Function

This command is used to enter the position of the antenna or antennas connected to the board. The entered positions should be expressed on the same datum as the one corresponding to the primary system used, i.e. WGS-84 if GPS is primary, PZ-90.02 if GLONASS is primary, CGCS2000 if BeiDou is primary.)
The command is either used in a rover to speed up the board start-up, in which case the entered position may be very approximate (to within a few kilometers), or on the contrary, it is used to enter the accurate coordinates of a base antenna.

Command Format

Syntax

Board used in SOL mode (a single antenna used):

$$PASHS,POS,m1,c2,m3,c4,f5[,s6][*cc]$$

Board used in DUO mode (two antennas used)

$$PASHS,d0,POS,m1,c2,m3,c4,f5[,s6][*cc]$$

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d0</td>
<td>ID of the antenna the command applies to:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1: Antenna #1 (primary antenna)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2: Antenna #2 (secondary antenna)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Skipped: Both antenna #1 and antenna #2</td>
<td></td>
</tr>
<tr>
<td>m1</td>
<td>Latitude in degrees and minutes with 7 decimal places (ddmm.mmmmmmm)</td>
<td>0-90</td>
</tr>
<tr>
<td>c2</td>
<td>North (N) or South (S)</td>
<td>N, S</td>
</tr>
<tr>
<td>m3</td>
<td>Longitude in degrees, minutes with 7 decimal places (dddmm.mmmmmmm)</td>
<td>0-180</td>
</tr>
<tr>
<td>c4</td>
<td>West (W) or East (E)</td>
<td>W, E</td>
</tr>
<tr>
<td>f5</td>
<td>Height in meters</td>
<td>±0-99999.999</td>
</tr>
<tr>
<td>s6</td>
<td>Position attribute (see table below)</td>
<td>PC1, ARP, SPT</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Position Attributes:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC1</td>
<td>Position is referenced to L1 phase center (default).</td>
</tr>
<tr>
<td>ARP</td>
<td>Position is referenced to ARP.</td>
</tr>
<tr>
<td>SPT</td>
<td>Position is referenced to survey point (ground mark).</td>
</tr>
</tbody>
</table>

Examples

Setting the base antenna position to 37°22.2912135’N, 121°59.7998217’W and 15.25 m:

$$PASHS,POS,3722.2912135,N,12159.7998217,W,15.25*1F$$

Comments

- You can enter a reference position tagged to either of the points (PC1, ARP or SPT) on the antenna.

 If the local antenna name (OWN) is known, the receiver will be able to re-compute internally the reference position entered, from SP to ARP or vice versa.
If the ANT/ANH parameters are known, the receiver will be able to re-compute internally the reference position entered, from SP to ARP or vice versa.
Before entering the coordinates of a reference position using $PASHS,POS, you should be aware that depending on the protocol you will use to let the base generate its differential data, the reference position needs to be expressed exclusively on one of these points. For example, the reference position in RTCM-3 protocol needs to be tagged to ARP whereas in CMR, this position should be tagged to PC1.

- The position you enter through $PASHS,POS will be NAKed if it differs from the autonomous one computed internally by more than a certain threshold (dependent on hardware, antenna type and firmware version).

If however, the internally computed position is not available at the time you run the $PASHS,POS command, then the entered position will be accepted whatever it is.

- By default, the base position is the one you would obtain in response to the following request: $PASHS,POS,MOV.

Related Commands

$PASHQ,CPD,POS (query command)
$PASHS,ANH
$PASHS,ANR
$PASHS,POS,CUR
$PASHS,POS,MOV

POS,CUR: Making the Current Position the Reference Position (Static)

Function

This command is used to define the reference position. This is done by saving the current position as the new permanent reference position. The “current” position is the one delivered by the receiver at the moment the command is issued.

When two antennas are used, the command assigns the “current” position to both antennas.

This command may be used in a base for quick performance evaluation when there is no opportunity to have an accurate position available.
Command Format

Syntax

```
$PASHS,POS,CUR[*cc]
```

Parameters

None

Comments

- The reference position inserted in RTCM, CMR or ATM messages is either a manually entered one, or the one resulting from running `$PASHS,POS,CUR` or `$PASHS,POS,MOV`, whichever was run last. The one that would result from running `$PASHS,POS,MOV` will be inserted by default if there is no entered position or no `$PASHS,POS,CUR` has been issued.

- The reference position inserted in ATM,RNX messages (scenario 1, 2, 3, 4, 100 or 101) should be either entered manually or through `$PASHS,POS,CUR`, whichever was done last. In absence of this, the reference position will be a moving position (as per `$PASHS,POS,MOV`).

- If you are using the ATOM super-compact format, remember this format is designed to be used with a static reference position only, so you should make sure this is the case.

- In ATM,RNX messages using scenario 0, 201, 202, 203, 204 and 300, the reference position is always a moving one ($PASHS,POS,MOV)

Related Commands

- `$PASHQ,CPD,POS` (query command)
- `$PASHS,POS`
- `$PASHS,POS,MOV`
POS,MOV: Making the Current Position the Reference Position (Dynamic)

Function
This command is used to tell the board to save the last computed position as the reference position. This is done EVERY TIME a new current position is computed. That means the reference position will be an ever changing one if the base is moving.
The “current” position computed by the receiver may be a standalone or DGPS one, but never an RTK one.
By default the receiver uses this “POS,MOV” operating mode to define the reference position.
When two antennas are used, the command assigns a specific position to each of the two antennas. For each antenna, the last computed position results from the data received by this antenna.

Command Format Syntax
$PASHS,POS,MOV[*cc]

Parameters
None.

Comments
- The reference position inserted in RTCM, CMR or ATM messages is either a manually entered one, or the one resulting from running $PASHS,POS,CUR or $PASHS,POS,MOV, whichever was run last. The one that would result from running $PASHS,POS,MOV will be inserted by default if there is no entered position or no $PASHS,POS,CUR has been issued.
- The reference position inserted in ATM,RNX messages (scenario 1, 2, 3, 4, 100 or 101) should be either entered manually or through $PASHS,POS,CUR, whichever was done last. In absence of this, the reference position will be a moving position (as per $PASHS,POS,MOV).
- If you are using the ATOM super-compact format, remember this format is designed to be used with a static reference position only, so you should make sure this is the case.
- In ATM,RNX messages using scenario 0, 201, 202, 203, 204 and 300, the reference position is always a moving one ($PASHS,POS,MOV)
PPP: Selecting a PPP Service

Function
This command is used to select a PPP service (Trimble RTX or TERIAsat). TERIAsat only covers Metropolitan France.

Command Format Syntax
$PASHS,PPP,s1[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
</table>
| s1 | Choice of PPP services:
| | • OFF: No PPP service
| | • RTX: Trimble RTX
| | • TRS: TERIAsat | OFF, RTX, TRS | RTX |

Example
Activating the RTX PPP service:
$PASHS,PPP,RTX

Related Commands
$PASHQ,PPP
$PASHS,PPP,SRC
$PASHS,RTX,MOD

PPP,RST: Resetting the Selected PPP Service

Function
This command is used to reset the PPP service.

Command Format Syntax
$PASHS,PPP,RST[*cc]

Parameters
None.

Related Commands
$PASHQ,CPD,POS (query command)
$PASHS,POS
$PASHS,POS,CUR
PPP,SRC: Defining Channel Delivering Corrections to the Selected PPP Service

Function
This command is used to define the transmission channel used to route corrections to the selected PPP service.

Command Format Syntax
$PASHS,PPP,SRC,s1[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
</table>
| s1 | Possible routing options are:
• AUT: Corrections are delivered by either L-band channel or receiver port
• LBN: Corrections only come from the L-band channel.
• IP: Corrections only come from a port (serial, USB, Bluetooth, IP).
• OFF: No corrections are provided to the PPP service. | AUT, LBN, IP, OFF | AUT |
| *cc | Optional checksum | *00-*FF | |

Example
Using corrections received via L-band:
$PASHS,PPP,SCR,LBN

Related Commands
$PASHQ,PPP
$PASHS,PPP

PPS: Setting PPS Pulse Properties

Function
This command is used to set the period, offset and GPS synchronized edge (rising or falling) of the PPS pulse.
Set Command Library

Command Format Syntax
$PASHS,PPS,f1,f2,c3[*cc]

Parameters
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>f1</td>
<td>PPS time period, a multiple or fraction of 1 second.</td>
<td>• 0: 1 PPS disabled</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0.0: 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 or 60</td>
<td></td>
</tr>
<tr>
<td>f2</td>
<td>Time offset in milliseconds.</td>
<td>± 999,999,999</td>
<td>0</td>
</tr>
<tr>
<td>c3</td>
<td>GPS-synchronized edge code:</td>
<td>• "R" for rising edge</td>
<td>R, F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• "F" for falling edge</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
<td></td>
</tr>
</tbody>
</table>

Example
Setting the PPS signal to a period of 2 seconds, with an offset of 500 ms and a GPS-synchronized rising edge:
$
$PASHS,PPS,2,+500,R*74

PRT: Setting Baud Rates

Function
This command is used to set the baud rate of any of the serial ports used in the receiver.

Command Format Syntax
$PASHS,PRT,c1,d2[*cc]

Parameters
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>Port ID</td>
<td>A, B, D</td>
</tr>
<tr>
<td>d2</td>
<td>Baud rate</td>
<td>All ports: 2-12 (Default 9)</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Baud Rate</th>
<th>Code</th>
<th>Baud Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>38400</td>
<td>8</td>
<td>57600</td>
</tr>
<tr>
<td>2</td>
<td>1200</td>
<td>9</td>
<td>115200</td>
</tr>
<tr>
<td>3</td>
<td>2400</td>
<td>10</td>
<td>230400</td>
</tr>
<tr>
<td>4</td>
<td>4800</td>
<td>11</td>
<td>460800</td>
</tr>
<tr>
<td>5</td>
<td>9600</td>
<td>12</td>
<td>921600</td>
</tr>
<tr>
<td>6</td>
<td>19200</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

272
Example
Setting port A to 19200 Bd:
$PASHS,PRT,A,6

Related Commands
$PASHQ,PRT (query command)
$PASHS,CTS

PWR,OFF: Powering Off the Board

Function
This command is used to prepare the board before it is turned off. Using this command allows all the settings and parameters to be saved in the non-volatile memory. This command DOES NOT switch off the on-board power supply.

Command Format
Syntax
$PASHS,PWR,OFF[*cc]

Parameters
None.

Comments
Whenever you run a $PASHS command (set command), you must be aware that the resulting change is not saved to backup memory instantly, but only after a certain delay, which is estimated to be not greater than 120 seconds. There is a requirement behind this operating mode, which is to extend the chip’s life cycle as much as possible by reducing the number of write operations in the memory chip.

Because the $PASHS commands causing the receiver to restart (i.e. INI, RTS, CFG, POP, PWR, etc.) are also part of the “delayed” commands (seen from the backup memory), it is therefore recommended that you run $PASHS,PWR,OFF about 10 seconds before you initiate a power cycle or reset through one of these commands. After running the command, the on-board LED will turn solid red until the save operation is complete. When the LED goes off, the board can safely be powered off.

Example
Preparing the board to be turned off:
$PASHS,PWR,OFF*43
QZS: Enabling/Disabling QZSS Tracking

Function
This command is used to enable or disable QZSS tracking. The QZSS constellation tracking function is on by default (if [N] option enabled). QZSS signal L1 SAIF is not considered as QZSS and so should be disabled or enabled using $PASHS, SBA.

Command Format Syntax
$PASHS,QZS,s[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>Programmable pin ID:</td>
<td>ON or OFF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ON: QZSS satellites tracked and used</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• OFF: QZSS satellites not tracked</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>00~FF</td>
<td></td>
</tr>
</tbody>
</table>

Example
Enabling QZSS tracking:
$PASHS,QZS,ON

RCP,OWN: Naming Local Receiver

Function
This commands are used to enter the receiver’s own name as well as the reference receiver name.

Command Format Syntax

$PASHS,RCP,OWN,s1,[s2][s3][*cc]

or
$PASHS,RCP,OWN,s1,s3[*cc]
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Receiver name (case-sensitive).</td>
<td>31 characters max.</td>
<td>"ASTECH MB-TWO"</td>
</tr>
<tr>
<td>s2</td>
<td>Receiver firmware version</td>
<td>31 characters max.</td>
<td></td>
</tr>
<tr>
<td>s3</td>
<td>Receiver serial number</td>
<td>31 characters max.</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>00-FF</td>
<td></td>
</tr>
</tbody>
</table>

Comments

- With the receiver used as an RTK base, the s1 parameter is inserted into receiver name messages (e.g. RTCM-1033).
- When the receiver is used as an RTK rover, it will use the bias values corresponding to the entered local and reference names to correct the local and reference data accordingly.
- Because the RINEX format reserves only 20 characters for receiver names, including the 8 characters used when the $PASHS,AGB command is set to “ON”, we recommend you specify receiver names in 12 characters max. so that they can be converted to RINEX format without being truncated.

Example

Entering “Unknown” as the name of the local receiver:

$PASHS,RCP,OWN,UNKNOWN*2A

RCP,REF: Naming Reference Receiver

Function

This command is used at a rover to specify the name of the base receiver sending differential data.

Using this command only makes sense to name the receiver of the base defined as the base data source for the first baseline (i.e. as defined using $PASHS,1,BLN,...).

Command Format Syntax

$PASHS,RCP,REF,s1[*cc]
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Receiver name (case-sensitive).</td>
<td>31 characters max.</td>
<td>Empty</td>
</tr>
<tr>
<td>'cc</td>
<td>Optional checksum</td>
<td>00-FF</td>
<td></td>
</tr>
</tbody>
</table>

Comment
- All receiver names are case-sensitive.
- When a rover is assigned the RTK rover function, the entered base receiver name (s1 above) will be ignored if the differential data received from the base include the name of the base receiver.

Example
Entering “MyBase” as the name of the reference receiver:
$PASHS,RCP,REF,MyBase*cc

Related Commands
- $PASHQ,RCP,REF (query command)
- $PASHQ,RCP
- $PASHQ,PAR
- $PASHS,ANP,REF

RDP,PAR: Setting the Radio

Function
This command is used to set the radio connected to the specified port.

Command Format

Syntax

$PASHS,RDP,PAR,c1,a2,d3,[s4],[c5],[d6],[s7],[c8],[d9],[s10],[s11],[d12],[d13]*'cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>ID of the port connected to the radio you want to set.</td>
<td>A, B, D</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
<td>Range</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>s2 Radio Model:</td>
<td></td>
<td>PDL, ADL, XDL (ports A, B, D)</td>
</tr>
<tr>
<td></td>
<td>PDL (Pacific Crest):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– PDL HPB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– PDL LPB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ADL (Pacific Crest):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– ADL Vantage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– ADL Vantage Pro</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XDL:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Pacific Crest XDL Micro</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– Pacific Crest XDL Rover</td>
<td></td>
</tr>
<tr>
<td>d3 Channel number:</td>
<td></td>
<td>0-32</td>
</tr>
<tr>
<td></td>
<td>0-15 (PDL)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-32 (ADL)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-32 (XDL)</td>
<td></td>
</tr>
<tr>
<td>s4 Power management (if port D is used)</td>
<td></td>
<td>AUT, MAN</td>
</tr>
<tr>
<td></td>
<td>AUT: Automatic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAN: Manual</td>
<td></td>
</tr>
<tr>
<td>c5 Protocol used:</td>
<td></td>
<td>0-8</td>
</tr>
<tr>
<td></td>
<td>PDL:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0: Transparent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1: TRIMTALK</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2: DSNP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ADL, XDL:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0: Transparent (w EOT time out)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1: TRIMTALK 450S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2: Not used</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3: SATEL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4: TrimMarkII/IIe</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5: TT450S (HW)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6: TRIMMARK3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7: Transparent FST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8: U-Link, available only with specific radio firmware</td>
<td></td>
</tr>
</tbody>
</table>
Air link speed (in baud):

PDL:
- 4800 (GMSK modulation)
- 9600 (GMSK or 4FSK modulation)
- 19200 (4FSK modulation)

ADL or XDL (12.5 kHz):
- 4800 (GMSK modulation)
- 8000 (GMSK modulation)
- 9600 (4FSK modulation)

ADL or XDL (25 kHz):
- 4800 (GMSK modulation)
- 9600 (GMSK modulation)
- 16000 (GMSK modulation)
- 19200 (4FSK modulation)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s7</td>
<td>Radio sensitivity</td>
<td>LOW, MED, HIG, OFF</td>
</tr>
</tbody>
</table>
| c8 | Scrambler:
- 0: Off
- 1: On | 0, 1 |
| c9 | Forward Error Correction (FEC):
- 0: Off
- 1: On | 0, 1 |
| d10 | Radiated power for ADL Vantage:
- 0: 100 mW
- 1: 500 mW
- 2: 1 W
- 3: 2 W
- 4: 4 W

Radiated power for ADL Vantage Pro:
- 0: Level 1 (2 W)
- 1: Level 2
- 2: Level 3
- 3: Level 4
- 4: Level 5
See $PASHQ,RDP,PWR$ to set the power (in Watts)
Radiated power for XDL Micro:
- 0: 500 mW
- 2: 2 W |
| s11 | Repeater mode (XDL and ADL only)
(PCC command 0x6D) | OFF, ON |
| d12 | Repeater number (for c5= 1, 4, 5 or 6)
(PCC command 0x6D) | 0-3 |
• The command will be NAKed if the receiver has not been told on which port the radio is connected. Use command $PASHS,RDP,TYP to declare the port used.

• If a PDL radio is used, depending on its channel spacing, the air link speed you select may force the use of a particular type of modulation and protocol, as well as a particular FEC setting. The different possible combinations are summarized in the table below.

<table>
<thead>
<tr>
<th>Channel Spacing is:</th>
<th>You set c6 to:</th>
<th>Then modulation can only be:</th>
<th>Protocol can only be:</th>
<th>FEC Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5 kHz 4800 GMSK</td>
<td>The 3 protocols are possible.</td>
<td>May be set to ON for Transparent protocol (FEC1). Forced to OFF for the other two protocols.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.5 kHz 8000 Command NAKed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.5 kHz 9600 4FSK Transparent</td>
<td>May be set to ON (FEC1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 kHz 4800 GMSK TRIMTALK or DSNP</td>
<td>Forced to OFF.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 kHz 8000 Command NAKed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 kHz 9600 GMSK TRIMTALK or Transparent</td>
<td>Forced to OFF for TRIMTALK. May be set to ON for Transparent protocol (FEC1).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 kHz 16000 Command NAKed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 kHz 19200 4FSK Transparent</td>
<td>May be set to ON (FEC1)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conversely, the choice of a protocol or modulation may force the use of a particular air link speed.

• If an ADL radio is used, depending on its channel spacing, the air link speed you select may force the use of a particular type of modulation and protocol, as well as a particular FEC setting. The different possible combinations are summarized in the table below.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d13</td>
<td>Repeater delay in milliseconds (for c5=0, 7 or 8). Default delay is 5 ms. (PCC command 0x1A)</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>00-FF</td>
</tr>
</tbody>
</table>
particular FEC setting. The different possible combinations are summarized in the table below.

<table>
<thead>
<tr>
<th>Channel Spacing is:</th>
<th>You set cd to:</th>
<th>Then modulation can only be:</th>
<th>Protocol can only be:</th>
<th>FEC Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5 kHz</td>
<td>4800</td>
<td>GMSK</td>
<td>Transparent, TRIMALK 450S, TT450S (HW) or TrimMark II/IIe.</td>
<td>Forced to OFF for the other three.</td>
</tr>
<tr>
<td>12.5 kHz</td>
<td>8000</td>
<td>GMSK</td>
<td>TRIMALK 450S or TT450S (HW)</td>
<td>Forced to OFF</td>
</tr>
<tr>
<td>12.5 kHz</td>
<td>9600</td>
<td>GMSK</td>
<td>TrimMark3 or U-Link</td>
<td>Forced to OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4FSK</td>
<td>Transparent, SATEL or Transparent FST</td>
<td>May be set to ON (FEC 1 for Transparent protocol, FEC2 for the other two)</td>
</tr>
<tr>
<td>25 kHz</td>
<td>4800</td>
<td>GMSK</td>
<td>TRIMALK 450S, TT450S (HW) or TrimMark II/IIe or U-Link</td>
<td>Forced to OFF</td>
</tr>
<tr>
<td>25 kHz</td>
<td>8000</td>
<td>Command NAKed</td>
<td>Transparent, TrimTalk 450S, TT450S (HW) or U-Link</td>
<td>Forced to OFF for the other three.</td>
</tr>
<tr>
<td>25 kHz</td>
<td>9600</td>
<td>GMSK</td>
<td>TrimTalk 450S or TT450S (HW)</td>
<td>Forced to OFF</td>
</tr>
<tr>
<td>25 kHz</td>
<td>16000</td>
<td>GMSK</td>
<td>TrimTalk 450S or TT450S (HW)</td>
<td>Forced to OFF</td>
</tr>
<tr>
<td>25 kHz</td>
<td>19200</td>
<td>GMSK</td>
<td>TrimMark3</td>
<td>Forced to OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4FSK</td>
<td>Transparent, SATEL or Transparent FST</td>
<td>May be set to ON (FEC 1 for Transparent protocol, FEC2 for the other two)</td>
</tr>
</tbody>
</table>

Conversely, the choice of a protocol or modulation may force the use of a particular air link speed.

Example

Setting the internal XDL radio:

```
$PASH5,RDP,PAR,D,XDL,2,AUT,0,9600,LOW,0,0,OFF*1E
```

Related Commands

- `$PASHQ,RDP,PAR` (query command)
- `$PASH5,RDP,TYP`
- `$PASHQ,RDP,CHT`
RDP,TYP: Defining the Type of Radio Used

Function
This command is used to set manually the type of radio connected to the specified port. Normally, the type of internal radio (typically connected to port D) is detected automatically.

Command Format Syntax
$PASHS,RDP,TYP,c1,s2["cc"]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>ID of the port connected to the radio you want to set.</td>
<td>A, B, D</td>
</tr>
</tbody>
</table>
| s2 | Radio Model:
• NONE: No radio
• AUTO: Auto-detection
• PDL: Pacific Crest radio
 – PDL HPB
 – PDL LPB
• ADL: Pacific Crest radio
 – ADL Vantage
 – ADL Vantage Pro
• XDL: Pacific Crest XDL Rover | NONE, AUTO, PDL, ADL, XDL (ports A, B, D) |
| "cc" | Optional checksum | *00-*FF |

Example
Setting the external radio as ADL Vantage:
$PASHS,RDP,TYP,A,ADL

Related Commands
$PASHQ,RDP,TYP (query command)
$PASHS,RDP,PAR
REC: Enable/Disable, Start/Stop Raw Data Recording

Function
This command allows you to enable, disable, start or stop raw data recording. Raw data is recorded in the memory you selected with the $PASHS, MEM command.

Command Format
Syntax
$PASHS,REC,c[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>Control character:</td>
<td>Y, N, S, R</td>
</tr>
<tr>
<td></td>
<td>• Y: Yes. The receiver will immediately start recording data. This option also enables data recording at receiver power-up, i.e. recording will start every time you turn the receiver on, even if you stopped recording before the end of the previous session.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• N: No. The receiver will immediately stop recording data. This option also disables data recording at receiver power-up, i.e. the receiver won’t resume data recording every time you turn it on for a new operating session. This is the default mode.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• S: Stop. The receiver will immediately stop recording raw data. This option does not affect the way the receiver operates at power-up.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• R: Restart. The receiver will immediately start recording raw data. This option does not affect the way the receiver operates at power-up.</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>00-FF</td>
</tr>
</tbody>
</table>

Examples
Starting raw data recording:
$PASHS,REC,Y*54

Stopping raw data recording:
$PASHS,REC,N*43

Comment
If you want to log just NMEA messages and not the G-file and ATOM messages, you need to disable ATOM messages after enabling data recording.
See example below enabling only GGA and GSV messages to be saved to the current memory:
• Select USB to be the current memory:
$PASHS,MEM,2

Enable NMEA messages to USB:
$PASHS,NME,GGA,U,ON
$PASHS,NME,GSV,U,ON

Enable data recording. (This results in also enabling ATOM messages for G-file):
$PASHS,REC,Y

Disable ATOM messages:
$PASHS,ATM,ALL,U,OFF

Related Commands

$PASHQ,REC (query command)
$PASHS,MEM
$PASHS,ATM
$PASHS,NME

RFM: Enabling/Disabling Ring File Memory

Function
This command is used to enable or disable the use of the ring file memory.
Enabling the ring file memory allows you to manage the free memory space in the receiver, making sure you can log new raw data files for an unlimited period of time without running out of memory.

Command Format

$PASHS,RFM,s1[,d2]["cc"]
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
</table>
| s1 | Enabling or disabling the ring file memory:
- Y: Enables the use of the ring file memory. The oldest files will be deleted automatically when the amount of free memory space left drops below d2 (see below).
- N: Disables the use of the ring file memory. The logging of raw data files will stop when there is no free space left in the memory used. | Y, N | N |
| d2 | Threshold of free memory space left (in MBytes) for which the use of the ring file memory will come into play. | 1-1024 | 15 |
| *cc | Optional checksum | 00-FF |

Example

Enabling ring file memory:

$PASHS,RFM,Y*59

Relevant Query Command

$PASHQ,RFM

See Also

$PASHS,REC

RST: Default Settings

Function

This command is used to reset the receiver parameters to their default values. All parameters are reset except:
- Ephemeris data (except SBAS ephemeris)
- Almanac data
- Position
- Time

If the default_config.cmd file is found on the board (see $PASHS,DFC,SET), then all the commands listed in this file are run by the board just after it has been reset.

Command Format Syntax

$PASHS,RST[*cc]
Parameters
None.

Example
Resetting the receiver:
$PASHS,RST*20

CAUTION: Sending this command will cause all receiver parameters, including communication port settings, to be reset to their factory settings. If your application is using settings for communication ports that are different from factory defaults, then it may no longer be able to communicate with the board.

RT2: Enabling/Disabling RTCM 2.3 Messages

Function
This command is used to individually enable or disable RTCM 2.3 message types on the specified port.

Command Format
Syntax
$PASHS,RT2,s1,c2,s3,f4[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>RTCM 2.3 message type</td>
<td>See table below</td>
<td>-</td>
</tr>
<tr>
<td>c2</td>
<td>Port ID</td>
<td>A, B, C, D, F, I, P, Q</td>
<td></td>
</tr>
<tr>
<td>s3</td>
<td>Enables (ON) or disables (OFF) RTCM 2.3 message type</td>
<td>ON, OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>f4</td>
<td>Output rate in seconds</td>
<td>See table below</td>
<td>1</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
<td></td>
</tr>
</tbody>
</table>

Data Description f4 Range

<table>
<thead>
<tr>
<th>Data</th>
<th>Description</th>
<th>f4 Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 9</td>
<td>GPS corrections</td>
<td>0.05, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5 sec., etc. (integer seconds up to 999 sec.)</td>
</tr>
<tr>
<td>3</td>
<td>Geographical coordinates (ITRF) tagged to L1 phase center for reference position</td>
<td></td>
</tr>
</tbody>
</table>
Example

Setting the default RTCM 2.3 configuration in a base:

$PASHS,POS,<position coordinates> or $PASHS,POS,CUR*51
$PASHS,RT2,1,A,ON,1*52
$PASHS,RT2,3,A,ON,1*03
$PASHS,RT2,9,A,ON,1*09
$PASHS,RT2,31,A,ON,1*6B

Comments

About DGNSS corrections: Our receivers generate the same content in messages 3 and 32, which is coordinates entered by the $PASHS,POS command. To transform the original geodetic position ($PASHS,POS) into a Cartesian position (types 3 and 32), the WGS-84, PZ-90.02 or CGCS2000 ellipsoid is used depending on which primary GNSS system is used (PGS).

Our receivers generate DGNSS corrections (type 1 for GPS and type 31 for GLO) against reference position “type 3” (=32), using all GNSS satellites coordinates expressed either in WGS-84, PZ-90.02 or CGCS2000, depending on the primary GNSS system used.

Rovers ignore the content of message type 32. They need the “type 3” reference position to apply “type 1” and/or “type 31” corrections in DGNSS positions.

RT2,ALL: Disabling All RTCM 2.3 Messages

Function

This command is used to disable all the currently active RTCM 2.3 data messages on the specified port.

Command Format

Syntax

$PASHS,RT2,ALL,c1,OFF[*cc]

<table>
<thead>
<tr>
<th>Data</th>
<th>Description</th>
<th>f4 Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>31, 34</td>
<td>GLO corrections</td>
<td>0.05, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60, 120, 180, 240, 300, 360, 600, 720, 900, 1200, 1800, 3600 sec</td>
</tr>
<tr>
<td>32</td>
<td>Reference GLONASS PZ 90 position</td>
<td></td>
</tr>
</tbody>
</table>
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>Port ID</td>
<td>A, B, C, D, F, I, P, Q</td>
</tr>
<tr>
<td></td>
<td>• A, B, D: Serial port</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• C: USB serial port</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• I, P, Q, F: TCP/IP stream</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Example

Disabling all RTCM 2.3 messages on port A:

$PASHS,RT2,ALL,A,OFF*22

RT3: Enabling/Disabling RTCM 3.1 Messages

Function

This command is used to individually enable or disable RTCM 3.1 message types on the specified port.

Command Format

Syntax

$PASHS,RT3,s1,c2,s3[,f4][*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>RTCM 3.1 message type</td>
<td>See table below</td>
<td>-</td>
</tr>
<tr>
<td>c2</td>
<td>Port ID</td>
<td>A, B, C, D, F, I, P, Q</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• A, B, D: Serial port</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• C: USB serial port</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• I, P, Q, F: TCP/IP stream</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s3</td>
<td>Enables (ON) or disables (OFF) RTCM 3.1 message type</td>
<td>ON, OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>f4</td>
<td>Output rate in seconds</td>
<td>See table below</td>
<td>1</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
<td>-</td>
</tr>
</tbody>
</table>

Supported Data Messages:

<table>
<thead>
<tr>
<th>Data</th>
<th>Description</th>
<th>f4 range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001-1004</td>
<td>GPS+SBAS raw observations</td>
<td>0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60, 120, 180, 240, 300, 600, 720, 900, 1200, 1800, 3600 sec</td>
</tr>
<tr>
<td>1005-1006</td>
<td>TRF coordinates of reference position, tagged to ARP</td>
<td>0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5 sec., etc. (integer seconds up to 999 sec.)</td>
</tr>
<tr>
<td>1007-1008</td>
<td>Antenna name</td>
<td></td>
</tr>
</tbody>
</table>
Setting the default RTCM 3.1 configuration to serve the base mode:

- `$PASHS,POS,<position coordinates>` or `$PASHS,POS,CUR*51`
- `$PASHS,RT3,1004,A,ON,1*34`
- `$PASHS,RT3,1012,A,ON,1*33`
- `$PASHS,RT3,1006,A,ON,1*36`
- `$PASHS,RT3,1013,A,ON,1*36`

Setting the default RTCM 3.1 configuration to serve the raw data collection mode:

- `$PASHS,POS,MOV*41`
- `$PASHS,RT3,1004,A,ON,1*3`
- `$PASHS,RT3,1012,A,ON,1*33`
- `$PASHS,RT3,1006,A,ON,1*36`
- `$PASHS,RT3,1013,A,ON,61*04`
RT3,ALL: Disabling All RTCM 3.2 Messages

Function
This command is used to disable all the currently active RTCM 3.2 data messages on the specified port.

Command Format Syntax
$PASHS,RT3,ALL,c1,OFF[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>Port ID</td>
<td>A, B, C, D, F, I, P, Q</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>'00'-FF</td>
</tr>
</tbody>
</table>

Example
Disabling all RTCM 3. messages on port A:
$PASHS,RT3,ALL,A,OFF*23

RTK: Running RTK Processing on Set Baselines

Function
This command is used to run the RTK process over all the baselines (up to three) you have defined using command $PASHS,BLN.

The command can also be used to stop this process.

When a baseline engine is included in an RTK process, it is assumed that the type of base it is working from is a static one. Each of the baselines included in an RTK process is a source of position solution, and not a source of angle estimates.

See also command $PASHS,TOP.
Command Format
Syntax

General:

$PASHS,RTK,ON,d1[,d2[,d3]]*[cc]

To stop the RTK process:

$PASHS,RTK,OFF*[cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>First baseline number</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>d2</td>
<td>First baseline number</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>d3</td>
<td>First baseline number</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>00-FF</td>
</tr>
</tbody>
</table>

Comments
The following combinations are possible today:

- **Conventional RTK:**

 $PASHS,RTK,ON,1

- Combining positions or selecting the best position among engines #1 and #2:

 $PASHS,RTK,ON,1,2

 or

 $PASHS,RTK,ON,2,1

- Combining positions or selecting the best position among engines #1 and #3:

 $PASHS,RTK,ON,1,3

 or

 $PASHS,RTK,ON,3,1

- Combining positions or selecting the best position among engines #1, #2 and #3:

 $PASHS,RTK,ON,1,2,3

 (or any combination "1,3,2", "2,1,3", "2,3,1", etc.)

RTK,RST: Resetting RTK or RTX Computation

Function

This command is used to reset RTK or RTX computation by resetting every baseline engine delivering an RTK solution. This command is also applicable to all baseline engines serving an application of the RTK type.
Command Format

Syntax

$PASHS,RTK,RST[*cc]

Parameters

None.

Example

Resetting RTK computation:

$PASHS,RTK,RST

Comments

- This command is not applicable to engines delivering 3DF-type solutions (in this case, use $PASHS,3DF,RST to reset those engines).
- Resetting RTK/RTX computation means resetting the current estimates of single-difference (SD) carrier ambiguities for all processed signals.
- Just after issuing this command, you should expect jumps on position, increased RMS and temporary float solution status.

RTK,STI: Defining Which Base Data Stream to Use

Function

This command is used to specify the ID of the base station your RTK rover should work with. Your choice may be to let the board select the data stream by itself (Automatic base selection) or ask for a particular base to be used.

The choice made through this command is only applicable to the processing modes a network rover can operate in (see command $PASHS,DIF,NET). It is NOT applicable if a Trimble RTX service, or an SBL CMRx data stream is used.

Command Format

Syntax

$PASHS,RTK,STI,d1[*cc]
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
</table>
| d1 | ID of preferred base station:
- AUT: Base selected automatically
- Base ID (0-4095): ID of preferred base station | AUT, 0-4095 | AUT |
| *cc | Optional checksum | *00-*FF |

Example

Choosing base station ID 3001:

$PASHS,RTK,STI,3001*74

Comments

- The command equally impacts all GNSS sensors.
- If no corrections are received from the chosen base station, then the rover will output position in the mode the closest to RTK, i.e. DGNSS (see $PASHS,TOP), still using the last epoch of available corrections. In this case, the reported base ID and differential age will accurately reflect the currently working operating mode.

See also

$PASHQ,RTK (relevant query command)
$PASHS,STI
$PASHS,DIF,NET

RTX,DTM: RTX Datum Transformation

Function

This command is used to enable/disable a datum transformation so the computed RTX position can be delivered in the required datum.

Command Format Syntax

$PASHS,RTX,DTM,s1\{s2,s3\}*[cc]
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Enables/disables datum transformation: ON: Enables transformation OFF: Disables transformation. RTX position is expressed in ITRF 2008 current epoch.</td>
<td>ON, OFF</td>
</tr>
<tr>
<td>s2</td>
<td>If s1= ON, name of the datum you want the computed RTX position to be transformed to. AUTO, or choose datum name from list below.</td>
<td></td>
</tr>
<tr>
<td>s3</td>
<td>If s1=ON, name of the tectonic plate corresponding to where the position is computed. AUTO, or choose plate name from list below.</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>00-FF</td>
</tr>
</tbody>
</table>

Datum Name Description

<table>
<thead>
<tr>
<th>Datum Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO</td>
<td>Automatic detection of datum according to current position</td>
</tr>
<tr>
<td>ITRF1989</td>
<td>ITRF1989 (epoch 1988)</td>
</tr>
<tr>
<td>ITRF1990</td>
<td>ITRF1990 (epoch 1988)</td>
</tr>
<tr>
<td>ITRF1993</td>
<td>ITRF1993 (epoch 1993)</td>
</tr>
<tr>
<td>ITRF1994</td>
<td>ITRF1994 (epoch 1993)</td>
</tr>
<tr>
<td>ITRF1996</td>
<td>ITRF1996 (epoch 1997)</td>
</tr>
<tr>
<td>ITRF1997</td>
<td>ITRF1997 (epoch 1997)</td>
</tr>
<tr>
<td>ITRF2000</td>
<td>ITRF2000 (epoch 1997)</td>
</tr>
<tr>
<td>ITRF2005</td>
<td>ITRF2005 (epoch 2000)</td>
</tr>
<tr>
<td>ITRF2008</td>
<td>ITRF2008 (epoch 2005)</td>
</tr>
<tr>
<td>NAD83</td>
<td>NAD83 (epoch 1997)</td>
</tr>
<tr>
<td>NAD83-CRS</td>
<td>NAD83-CRS (epoch 2002)</td>
</tr>
<tr>
<td>NAD83-CORS96</td>
<td>NAD83-CORS96 (epoch 2002)</td>
</tr>
<tr>
<td>ETRS89</td>
<td>ETRS89 (epoch 1999)</td>
</tr>
<tr>
<td>ETRF2000-R05</td>
<td>ETRF2000-R05 (epoch 2000)</td>
</tr>
<tr>
<td>GDA94</td>
<td>GDA94 (epoch 1994)</td>
</tr>
<tr>
<td>SIRGAS2000</td>
<td>SIRGAS2000 (epoch 2000,4)</td>
</tr>
<tr>
<td>SIRGAS95</td>
<td>SIRGAS95 (epoch 1995,4)</td>
</tr>
<tr>
<td>SIRGAS-CON</td>
<td>SIRGAS-CON (epoch 2005)</td>
</tr>
<tr>
<td>NAD83-2011</td>
<td>NAD83-2011 (epoch 2010)</td>
</tr>
<tr>
<td>NAD83-MAT1</td>
<td>NAD83-MAT1 (epoch 2010)</td>
</tr>
<tr>
<td>NAD83-PAT1</td>
<td>NAD83-PAT1 (epoch 2010)</td>
</tr>
<tr>
<td>RG95v2</td>
<td>RG95v2 (epoch 2009)</td>
</tr>
<tr>
<td>CGCS2000</td>
<td>CGCS2000 (epoch 2000)</td>
</tr>
<tr>
<td>Tectonic Plate</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>AUTO</td>
<td>Automatic detection of plate according to current position</td>
</tr>
<tr>
<td>AEGS</td>
<td>Aegean Sea</td>
</tr>
<tr>
<td>ALT P</td>
<td>Altiplano</td>
</tr>
<tr>
<td>AMUR</td>
<td>Amurian</td>
</tr>
<tr>
<td>ANTL</td>
<td>Anatolia</td>
</tr>
<tr>
<td>ANTA</td>
<td>Antarctica</td>
</tr>
<tr>
<td>ARAB</td>
<td>Arabia</td>
</tr>
<tr>
<td>AUST</td>
<td>Australia</td>
</tr>
<tr>
<td>BURF</td>
<td>Balmoral Reef</td>
</tr>
<tr>
<td>BANS</td>
<td>Banda Sea</td>
</tr>
<tr>
<td>BIRH</td>
<td>Birds Head</td>
</tr>
<tr>
<td>BURM</td>
<td>Burma</td>
</tr>
<tr>
<td>CAPR</td>
<td>Capricorn</td>
</tr>
<tr>
<td>CARB</td>
<td>Caribbean</td>
</tr>
<tr>
<td>CARL</td>
<td>Caroline</td>
</tr>
<tr>
<td>COCO</td>
<td>Cocos</td>
</tr>
<tr>
<td>CONR</td>
<td>Conway Reef</td>
</tr>
<tr>
<td>EASR</td>
<td>Easter</td>
</tr>
<tr>
<td>EURA</td>
<td>Eurasia</td>
</tr>
<tr>
<td>FUTU</td>
<td>Futuna</td>
</tr>
<tr>
<td>GALP</td>
<td>Galapagos</td>
</tr>
<tr>
<td>INDI</td>
<td>India</td>
</tr>
<tr>
<td>JUFU</td>
<td>Juan de Fuca</td>
</tr>
<tr>
<td>JUFE</td>
<td>Juan Fernandez</td>
</tr>
<tr>
<td>KERM</td>
<td>Kermadec</td>
</tr>
<tr>
<td>LWAN</td>
<td>Lwandle</td>
</tr>
<tr>
<td>MAQR</td>
<td>Macquarie</td>
</tr>
<tr>
<td>MANU</td>
<td>Manus</td>
</tr>
<tr>
<td>MAOK</td>
<td>Mauke</td>
</tr>
<tr>
<td>MARI</td>
<td>Marianu</td>
</tr>
<tr>
<td>MOLU</td>
<td>Molucca Sea</td>
</tr>
<tr>
<td>NAZC</td>
<td>Nazca</td>
</tr>
<tr>
<td>NHBR</td>
<td>New Hebrides</td>
</tr>
<tr>
<td>NiAO</td>
<td>Niueatou</td>
</tr>
<tr>
<td>NOAM</td>
<td>North America</td>
</tr>
<tr>
<td>NAND</td>
<td>North Andes</td>
</tr>
<tr>
<td>NOBI</td>
<td>North Bismarck</td>
</tr>
<tr>
<td>NUBI</td>
<td>Nuba</td>
</tr>
<tr>
<td>ORHO</td>
<td>Okhotsk</td>
</tr>
<tr>
<td>ORIN</td>
<td>Okinawa</td>
</tr>
<tr>
<td>PCCS</td>
<td>Pacific</td>
</tr>
<tr>
<td>PANM</td>
<td>Panama</td>
</tr>
<tr>
<td>PHIL</td>
<td>Philippine Sea</td>
</tr>
<tr>
<td>RIVR</td>
<td>Rivera</td>
</tr>
</tbody>
</table>
Example
Output RTX positions at fixed epoch: i.e. in ITRF2008 (epoch 2005), using auto-detection of tectonic plate:

$PASHS,RTX,DTM,ON,ITRF2008,AUTO

Related Commands
$PASHQ,RTX
$PASHS,RTX,MOD
$PASHS,RTX,SRC

RTX,KPI: Entering Known RTX Initialization Point

Function
This command is used to force the RTX engine to initialize on a known point.
Entering a known point for RTX initialization causes the RTX engine to reset and reinitialize assuming the receiver is currently occupying this point.

Command Format
Syntax
$PASHS,RTX,KPI,m1,c2,m3,c4,f5[,f6,f7,f8][,c9][,c10,c11][,f12][*cc]
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>m1</td>
<td>Latitude in degrees and minutes with 7 decimal places (ddmm.mmmmmm)</td>
<td>0-90</td>
</tr>
<tr>
<td>c2</td>
<td>North (N) or South (S)</td>
<td>N, S</td>
</tr>
<tr>
<td>m3</td>
<td>Longitude in degrees, minutes with 7 decimal places (ddmm.mmmmmm)</td>
<td>0-180</td>
</tr>
<tr>
<td>c4</td>
<td>West (W) or East (E)</td>
<td>W, E</td>
</tr>
<tr>
<td>f5</td>
<td>Height in meters</td>
<td>20-999999.999</td>
</tr>
<tr>
<td>f6</td>
<td>Accuracy (RMS) in Lat direction (default: 0.01)</td>
<td>0-99.999 m</td>
</tr>
<tr>
<td>f7</td>
<td>Accuracy (RMS) in Lon direction (default: 0.01)</td>
<td>0-99.999 m</td>
</tr>
<tr>
<td>f8</td>
<td>Accuracy (RMS) in Alt direction (default: 0.01)</td>
<td>0-99.999 m</td>
</tr>
<tr>
<td>c9</td>
<td>Position attribute (see table below)</td>
<td>PC1, ARP, SPT</td>
</tr>
<tr>
<td>c10</td>
<td>Datum name (default is AUTO) or "OFF"</td>
<td>See RTX,DTM</td>
</tr>
<tr>
<td>c11</td>
<td>Plate name (default is AUTO)</td>
<td>See RTX,DTM</td>
</tr>
<tr>
<td>f12</td>
<td>Epoch (year) of position</td>
<td>YYYY.YY</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>00-FF</td>
</tr>
</tbody>
</table>

Position Attributes:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC1</td>
<td>Position is referenced to L1 phase center (default).</td>
</tr>
<tr>
<td>ARP</td>
<td>Position is referenced to ARP.</td>
</tr>
<tr>
<td>SPT</td>
<td>Position is referenced to survey point (ground mark).</td>
</tr>
</tbody>
</table>

Examples

For a quick start on a point with coordinates
37°22.2912135’N, 121°59.7998217’W and 15.25 m:

\$PASHS,RTX,KPI,3722.2912135,N,12159.7998217,W,15.25

Comments

- Default values will be used whenever parameter fields are found missing or intentionally left empty.
- The command will be NAKed if no information is available to convert the entered position into an L1 phase center position or to transform the entered position to the right datum and plate (ITRF 2008 current epoch year).
- The RTX,KPI command is not applicable to any PVT engines other than RTX engines.
- When "AUTO" is selected for names (c10, c11), the required datum should be selected from the current receiver position (like $PASHS,RTX,DTM).
- c10=OFF refers to ITRF 2008 current epoch. No KPI coordinate transformation is required (like $PASHS,RTX,
DTM,OFF). In this case c11 is ignored, while optional field f12 can report the KPI position epoch.

Query Command
$PASHQ,RTX,STS$

RTX,MOD: Specifying the RTX Corrections Service Used

Function
This command is used to specify which RTX corrections service the receiver will use, depending on the desired level of accuracy:

- CenterPoint RTX (centimeter-level, steady-state accuracy)
- FieldPoint RTX (decimeter-level, steady-state accuracy)
- RangePoint RTX (submeter-level, steady-state accuracy)
- ViewPoint RTX (meter-level, steady-state accuracy)

It can also be run to disable the use of Trimble RTX.

Command Format
Syntax
$PASHS,RTX,MOD,s1*[cc]$

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
</table>
| s1 | Trimble RTX service to be used:
 - OFF: RTX service disabled (default)
 - ON: Best RTX service available, in line with the currently installed options.
 - CPT: CenterPoint RTX
 - RPT: RangePoint RTX
 - VPT: ViewPoint RTX
 - FPT: FieldPoint RTX | OFF, ON, RPT, CPT, RPT, VPT, FPT | Depends on installed options (see table below) |

-cc
Optional checksum *00-*FF

Options installed
<table>
<thead>
<tr>
<th>Default Trimble RTX Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>[C], [P], [4] and [9] disabled OFF</td>
</tr>
<tr>
<td>[C] only CPT</td>
</tr>
<tr>
<td>[P] only RPT</td>
</tr>
<tr>
<td>[4] only VPT</td>
</tr>
<tr>
<td>[9] only FPT</td>
</tr>
</tbody>
</table>
When several options are enabled, the mode providing the best accuracy is the default one. The order is the following: CPT(best accuracy), FPT, RPT, VPT.

Example

Requesting the use of Trimble RTX service “CenterPoint RTX”:

```
$PASHS,RTX,MOD,CPT*2A
```

Comments

- All supported Trimble RTX services except for ViewPoint RTX, requires that the L2 tracking option be installed. Applying the command to switch between VPT and any of the other three modes will cause the RTX engine to be restarted.
- The command will be NAKed if there is an attempt to activate a Trimble RTX service with higher accuracy than what is possible considering the currently installed options.
- After you’ve run $PASHS,RTX,MOD,OFF, the RTX engine will still be running, but only to decode the subscription details, which will be forwarded to the Service Layer (if detected/decoded) via command $PASHS,BSM. As soon as $PASHS,RTX,MOD,OFF is applied, the RTX position is right away made no longer available.
- The ability to output RTX correcting streams using ATM,DAT messages is not affected by this command.

See also

$PASHQ,RTX (relevant query command)

$PASHS,RTX,SRC

RTX,RST: Resetting RTX Position Computation

Function

This command is used to reset the process through which an RTX (PPP) position solution is computed.

Command Format

```
$PASHS,RTX,RST[*cc]
```

Parameters

None.
Comments

- Resetting RTX means fully stopping and re-initializing from scratch all RTX computations in progress. The command does NOT however reset GNSS tracking and reception of correction data.
- This command is not applicable to engines delivering RTK position solutions. $PASHS,RTK,RST should be used to reset the RTK computation process.

RTX,SRC: Specifying RTX Corrections Source

Function

This command is used to specify the path through which corrections are applied to the Trimble RTX/RTK engine. This engine is dedicated to computing a position solution by processing all available GNSS observables corrected by Trimble RTX State Space Correcting Data or Trimble Base/Network CMRx/sCMRx data.

RTX/RTK correcting data may be fed to the board either through an L-band (sky) data link or through GPRS/NTRIP service via one of the board’s communication ports.

Command Format

Syntax

$PASHS,RTX,SRC,s1[*cc]
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Choosing how to apply corrections to the RTX/RTK engine:</td>
<td>AUT, LBN, IP, OFF</td>
</tr>
<tr>
<td></td>
<td>AUT (default setting): The RTX/RTK engine will process corrections data received via either L-band channel or one of the board’s communication ports. When data are available on both channels, the board selects the best source of RTX corrections, based on internal, proprietary algorithms. In most cases, CMRx/sCMRx corrections entering the board via a port will predominate over the L-band data stream.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LBN: Corrections data provided to the RTX engine are expected to be received via the L-band channel. The command will be NAKed if the [L] firmware option is missing.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IP: CMRx or sCMRx corrections data provided to the RTX/RTK engine are expected to be received via one of the board ports.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OFF: No corrections are provided to the RTX/RTK engine, so no position solution is computed. However navigation data (e.g. ephemeris data) continue to be delivered to the RTX/RTK engine so it can quickly restart when requested to do so. On making this choice, RTX/RTK positions will continue to be reported for about 300 seconds.</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>00-ff</td>
</tr>
</tbody>
</table>

Example

Enabling RTX engine using the possible two RTX corrections reception channels:

$PASHS,RTX,SRC,AUT

Comments

- This command does not affect the possibility to output each of the corrections streams through ATOM message ATM,DAT.
- If AUT is selected, and if more than one CMRx/sCMRx stream enter the board via different ports, the stream detected first is the one used (and all the others are ignored).
RXC,PAR: Setting the Embedded RINEX Converter

Function
This command is used to set all the parameters of the RINEX converter. While parameters d1 to s10 in the command define the type of conversion performed by $PASHS,RXC,RUN, parameters s11 to s16 define the different parameters found in the RINEX header of a converted file, following the conversion of this file by $PASHS,RXC,RUN.

Command Format Syntax
PASHS,RXC,PAR[,VER,d1][,CMP,d2][,GPS,s3][,GLO,s4][,SBA,s5][,GAL,s6][,BDS,s7][,QZS,s8][,IRN,s9][,AGY,s10][,OBN,s11][,MNM,s12][,MNB,s13][,OBS,s14][,NAV,s15][,MET,s16][,ANT,d17][*cc]
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>VER, d1</td>
<td>RINEX version:</td>
<td>2</td>
<td>1-7</td>
</tr>
<tr>
<td></td>
<td>• 1: RINEX 2.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2: RINEX 2.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 3: RINEX 2.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 4: RINEX 3.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 5: RINEX 3.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 6: RINEX 3.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 7: RINEX 3.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMP, d2</td>
<td>File compression:</td>
<td>3</td>
<td>0-3</td>
</tr>
<tr>
<td></td>
<td>• 0: None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1: Hatanaka</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2: tarZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 3: Hatanaka and tarZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPS, s3</td>
<td>GPS measurement conversion</td>
<td>ON</td>
<td>ON, OFF</td>
</tr>
<tr>
<td>GLO, s4</td>
<td>GLONASS measurement conversion</td>
<td>ON</td>
<td>ON, OFF</td>
</tr>
<tr>
<td>SBAS, s5</td>
<td>SPAS measurement conversion</td>
<td>ON</td>
<td>ON, OFF</td>
</tr>
<tr>
<td>GAL, s6</td>
<td>GALILEO measurement conversion</td>
<td>ON</td>
<td>ON, OFF</td>
</tr>
<tr>
<td>BDS, s7</td>
<td>BEIDOU measurement conversion</td>
<td>ON</td>
<td>ON, OFF</td>
</tr>
<tr>
<td>QZS, s8</td>
<td>QZSS measurement conversion</td>
<td>ON</td>
<td>ON, OFF</td>
</tr>
<tr>
<td>IRNSS, s9</td>
<td>IRNSS measurement conversion</td>
<td>ON</td>
<td>ON, OFF</td>
</tr>
<tr>
<td>AGY, s10</td>
<td>Agency name</td>
<td>20 char. max.</td>
<td></td>
</tr>
<tr>
<td>OBN, s11</td>
<td>Observer name</td>
<td>20 char. max.</td>
<td></td>
</tr>
<tr>
<td>MNM, s12</td>
<td>Antenna marker name</td>
<td>20 char. max.</td>
<td></td>
</tr>
<tr>
<td>MNB, s13</td>
<td>Antenna marker number</td>
<td>20 char. max.</td>
<td></td>
</tr>
<tr>
<td>OBS, s14</td>
<td>Observation file comment line</td>
<td>60 char. max.</td>
<td></td>
</tr>
<tr>
<td>NAV, s15</td>
<td>Navigation file comment line</td>
<td>60 char. max.</td>
<td></td>
</tr>
<tr>
<td>MET, s16</td>
<td>Meteorological file comment line</td>
<td>60 char. max.</td>
<td></td>
</tr>
<tr>
<td>ANT, d17</td>
<td>Antenna:</td>
<td>1</td>
<td>0-2</td>
</tr>
<tr>
<td></td>
<td>• 0: Converts raw data for both antennas</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1: Converts raw data for antenna 1 only</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2: Converts raw data for antenna 2 only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>00-FF</td>
<td></td>
</tr>
</tbody>
</table>

Example

Setting the RINEX converter to produce RINEX 2.11, TarZ-compressed files:

```
$PASHS,RXC,PAR,VER,2,CMP,2,AGY,Intec,OBN,Peter Smith,
MNM,CARQ,MNB,1005M001*4E
```

Related Commands

$PASHS,RXC,RUN
RXC,RUN: Converting a G-File into RINEX Files

Function
This command is used to convert a G-file into RINEX files.

Command Format

Syntax

```plaintext
$PASHS,RXC,RUN,[d1],[s2],s3[*cc]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
</table>
| d1 | Memory location:
• 0: Internal memory
• 2: USB device
If d1 is omitted, the receiver looks for the specified file on the memory last selected with $PASHS,MEM. | 0 or 2 | 0 |
| s2 | Path on the selected memory where to find the G-file. | 255 characters max. | - |
| s3 | G-file name. No path allowed in this field. | 13 characters in the form "GxxxxSyy.ddd" | - |
| *cc | Optional checksum | ´00-FF | - |

Comments

- The headers of the RINEX files are built using the information provided through $PASHS,RXC,PAR.
- The resulting RINEX files are stored in the same folder as the one containing the G-file specified in the command.
- $PASHR,NAK*30 is returned if the specified file does not exist, is not a G-file, or a RINEX conversion is currently in progress.
- $PASHR,ACK*3D is returned when the command is accepted, then $PASHR,RXC,OK*15 or $PASHR,RXC,FAILED*12, depending on whether the conversion respectively succeeded or failed.

Examples

Converting a G-file to Rinex (in the same folder):

```plaintext
$PASHS,RXC,RUN,,GabcdA09.241*67
$PASHR,ACK*3D
$PASHR,RXC,OK*15
```

Converting a G-file to Rinex and saving the resulting file in a sub-folder:

```plaintext
$PASHS,RXC,RUN,2,2009/241,GabcdA09.241*46
```
SBA: Enabling/Disabling SBAS Tracking

Function
This command is used to enable or disable SBAS tracking. QZSS signal L1 SAIF is considered as SBA and so can be enabled or disabled using this command.

Command Format
Syntax

```
$PASHS,SBA,s1[*cc]
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Enables (ON) or disables (OFF) SBAS tracking</td>
<td>ON, OFF</td>
<td>ON (if option [N] enabled)</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>00-FF</td>
<td></td>
</tr>
</tbody>
</table>

Example
Enabling SBAS tracking:

```
$PASHS,SBA,ON
```

Comments
- The command will be NAKed if the [N] option has not been activated beforehand.
- Disabling SBAS does not mean SBAS corrections stop to be applied to the PVT engine. The last SBAS corrections received will indeed continue to be applied for some time. So disabling SBAS tracking does not mean SBAS differential positioning is stopped immediately.

Related Commands

- $PASHQ,SBA (query command)
- $PASHS,GLO
- $PASHS,GPS
- $PASHS,QZS
- $PASHS,GAL

Relevant Query

Command
None.

See Also

- $PASHS,RNX,PAR
- $PASHS,MEM

304
$PASHS,BDS
$PASHS,DIF,SBA

SIT: Defining a Site Name

Function
This command is used to define a site name that will be used in the naming of the next logged raw data file. The default site name is the last four digits of the receiver serial number.

Command Format

```
$PASHS,SIT,s[*cc]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>Site name (or site ID), a 4-character string where ".", ",", "/" and "" are not allowed.</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>00-FF</td>
</tr>
</tbody>
</table>

Example
Defining site name “ECC1”:

```
$PASHS,SIT,ECC1*63
```

Related Commands

$PASHQ,SIT
$PASHS,REC

SNS: Configuring the M-Sensor

Function
This command is used to set the number of independent sensors on the board (M-Sensor= Multiple Sensors).

Command Format

```
$PASHS,SNS,s1[,d2][*cc]
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Defines the number of "independent" sensors running on the board (default: SOL).</td>
<td>SOL, DUO</td>
</tr>
<tr>
<td></td>
<td>• SOL: One sensor (= one antenna)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• DUO: Two sensors (= two antennas)</td>
<td></td>
</tr>
<tr>
<td>d2</td>
<td>Index specifying antenna/sensor configuration (default: 0). See table below.</td>
<td>0-2</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>00-FF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>d2</th>
<th>s1=SOL</th>
<th>s1=DUO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 or blank</td>
<td>• Active antenna input is antenna input #1 or #2, whichever provides the best signal (default). In either case, L1/L2 GNSS is supported.</td>
<td>• Antenna input #1 is L1/L2 GNSS capable.</td>
</tr>
<tr>
<td></td>
<td>• L-band sensor can only be enabled for antenna input #1 using command $PASHS,GLB.</td>
<td>• L-band sensor won’t start if antenna input #2 is used.</td>
</tr>
<tr>
<td>1</td>
<td>• Active antenna input is antenna input #1 only. L1/L2 GNSS supported by this input.</td>
<td>• Both antenna inputs #1 and #2 are L1/L2 GNSS capable.</td>
</tr>
<tr>
<td></td>
<td>• L-band sensor can only be enabled for antenna input #1 using command $PASHS,GLB.</td>
<td>• No L-band sensor can be activated.</td>
</tr>
<tr>
<td>2</td>
<td>• Active antenna input is antenna input #2 only. L1/L2 GNSS supported by this input.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• No L-band sensor can be activated.</td>
<td></td>
</tr>
</tbody>
</table>

Example

Setting dual-sensor mode:

$PASHS,SNS,DUO

Comments

• Important! This command restores some default values automatically to all the parameters usually controlled by the following commands:
 - $PASHS,1,BLN
 - $PASHS,2,BLN
The restored default values relevant to these six commands depend on the mode (SOL or DUO) you chose with the $PASHS,SNS command.

- Using this command does not request the board to be restarted.
- The command is NAKed if you choose “DUO” and the [D] option has not been activated beforehand.
- Default operation is in SOL mode with d2=0, meaning whatever the antenna input used, you can be sure the board will deliver a position.
- In DUO mode, the board’s CPU speed is doubled, allowing higher data throughput, but power consumption is increased compared to that using SOL.
- In DUO mode, signal tracking is forced to optimal (i.e. the setting controlled by $PASHS,OBS cannot be “ALL” in this case, and so will automatically be set to “OPT” whenever you choose “DUO”). If you choose SOL however, you have the choice between “OPT” and “ALL” for $PASHS,OBS.
- In DUO mode, the second of the three Blade engines automatically starts computing the heading relevant to the vector oriented from antenna 2 to antenna 1. With d2=1, heading is determined with L1 only. By default, first, the heading process goes through a calibration stage to determine the baseline length. Then the process is constrained with the computed baseline length to improve the performance of the L1-only heading computation. This is called computing heading in fixed mode. With d2=2, heading is determined using only L1, L2 and L3 signals by default, i.e. without the need to determine the baseline length through a prior calibration stage. This is called computing heading in flex mode. However, in DUO mode and for all values of d2, additional commands exist to request auto-calibration, or to enter the baseline length manually (see 3DF - 3DF,CLB - 3DF,Vxx set commands).
- In DUO mode, Trimble RTX is allowed only using antenna input #1, which means d2 should be “0” or “1”. Trimble RTX is not allowed with antenna input #2.
STI: Defining a Station ID

Function
This command is used to define the station ID the base will broadcast in its differential messages to the rover.

Command Format
Syntax
$PASHS,STI,d1[,s2,s3,s4]*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Station ID (default is 31)</td>
<td>0-1023 (RTCM 2.3) 0-4095 (RTCM 3.x and ATOM) 0-31 (CMR & CMR+)</td>
</tr>
<tr>
<td>s2</td>
<td>Short base name (used to generate CMR and CMR+ messages)</td>
<td>8 characters max.</td>
</tr>
<tr>
<td>s3</td>
<td>Long base name (used to generate CMR and CMR+ messages)</td>
<td>51 characters max.</td>
</tr>
<tr>
<td>s4</td>
<td>Base code (used to generate CMR and CMR+ messages)</td>
<td>16 characters max.</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Examples
Defining station ID “150” for use in RTCM messages:
$PASHS,STI,150*23

Comment
- If the chosen station ID is beyond the upper limit in the applicable range, then the value “31” is chosen instead (i.e., “31” instead of “56” for example if CMR/CMR+ messages are broadcast, or “31” instead of “1041” for example if RTCM 2.3 messages are broadcast).
- When used in DUO mode, the entered station ID is the one attached to the main sensor (antenna #1). The data tagged to the other sensor will be identified with an incremented station ID (entered station ID for main sensor...
+1). This rule applies in all cases, including when “31” is used in lieu of the incorrectly entered ID.

Related Commands

$PASHQ,ST1 (query command)

TCP,PAR: TCP/IP Server Settings

Function

This command is used to set the TCP/IP server.

Command Format

Syntax:

$PASHS,TCP,PAR[MOD,s1][,LGN,s2][,PWD,s3][,PRT,d4][,IPP,c5][,s6,RIP][,*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOD,s1</td>
<td>TCP/IP connection mode:</td>
<td>0-7</td>
</tr>
<tr>
<td></td>
<td>0: Disabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1: Input/output with authentication</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2: Input/output without authentication (default)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3: Output only. Allows multiple connections</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UDP/IP connection mode:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4: Broadcast transmit (output only)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5: Broadcast receive (input only)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6: Transmit to remote IP address (output only)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7: Received from remote IP address (input only)</td>
<td></td>
</tr>
<tr>
<td>LGN,s2</td>
<td>Login, case sensitive (default: trimble)</td>
<td>32 char. max.</td>
</tr>
<tr>
<td>PWD,s3</td>
<td>Password, case sensitive (default: empty)</td>
<td>32 char. max.</td>
</tr>
<tr>
<td>PRT,d4</td>
<td>Port number. Default is “8888”</td>
<td>100-65535</td>
</tr>
<tr>
<td>IPP,c5</td>
<td>Port name (default: P, or of c5 not specified))</td>
<td>I, F</td>
</tr>
<tr>
<td>RIP,s6</td>
<td>Remote IP address (for UDP/IP modes 6 and 7).</td>
<td>32 char. max.</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Example

Enabling TCP/IP connection with authentication (login: BX312, password: xwsead):

$PASHS,TCP,PAR,MOD,1,LGN,BX312,PWD,xwsead,PRT,88889,IPP,F

Comments

- When the TCP/IP server is enabled (s1=1 or 2) and the receiver is connected to a network via Ethernet, WiFi or Modem, an external device can open the port specified as
d4 and communicate with the board. In this case, the current port is port “I” or “F” on the board.

- When s1=1, the board does not accept any incoming data or commands until the Web Server password has been changed (see $PASHS,TCP,UID). It will however output those messages that are programmed on port “I” or “F” even if it has not received authentication yet.

Related Commands

- $PASHQ,TCP (query command)
- $PASHS,TCP,UID

TCP,UID: TCP/IP Authentication

Function

This command is used to enter the login and a password allowing a TCP/IP connection (requiring authentication) to be established.

Command Format

Syntax

$PASHS,TCP,UID,s1,s2[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Login</td>
<td>32 characters max.</td>
</tr>
<tr>
<td>s2</td>
<td>Password</td>
<td>32 characters max.</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Example

Entering authentication parameters (login: BX312, password: xwsead):

$PASHS,TCP,UID,BX312,xwsead*70

Comments

- The $PASHS,TCP,UID command should always be sent first every time a user tries to connect to a remote receiver through a secure TCP/IP connection (see $PASHS,TCP). Only after providing authentication parameters will the user be allowed to send commands or data to that receiver.
- When the login and password are correct, or no authentication is required, the receiver will return the following reply:
 $PASHR,TCP,OK*1B

310
• If authentication is required and the login or password is wrong, the receiver will return the following reply:

 \$PASHR,TCP,FAIL*1D

Related Commands

\$PASHS,TCP,PAR

TOP: Defining the Type of Output Position

Function

This command is used to define the best position solution the receiver is allowed to output through NMEA and ATM,PVT messages.

Command Format

Syntax

\$PASHS,TOP,s1[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Position type:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>"RTK": Up to RTK</td>
<td>RTK</td>
<td></td>
</tr>
<tr>
<td></td>
<td>"PPP": Up to PPP position</td>
<td>RTK, PPP, DIF, SBA, ALO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>"DIF": Up to RTCM differential</td>
<td>RTK, PPP, DIF, SBA, ALO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>"SBA": Up to SBAS differential</td>
<td>RTK, PPP, DIF, SBA, ALO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>"ALO": Only standalone</td>
<td>RTK, PPP, DIF, SBA, ALO</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
<td></td>
</tr>
</tbody>
</table>

Comments

• The receiver can compute several types of position solutions simultaneously. By default, the receiver will provide the best position solution computed (up to RTK). In some cases however, you may prefer to get a position solution of lesser quality because you think it is more robust. That’s exactly what this command allows you to do.

• Choosing a type of output position does not mean this type of position will always be output. If you choose RTK and the conditions to get this type of position status are not met (no corrections available, or computed position does not meet the quality criteria), then only a position of lesser quality will be provided.
• Whatever your choice of the output position type, the content of the VEC (baseline) and HPR (attitude) messages will not be affected by this choice.
• PPP position refers to Processing Precise State Space (SS) corrections like RTCM-3 SSR messages or Trimble Centerpoint/RTX data. PPP can often deliver the same level of accuracy as RTK but its convergence time is longer.

Example
Choosing RTCM differential as the best position solution to output:

$PASHS,TOP,DIF*59$

Related Commands
$PASHQ,TOP$
$PASHQ,PAR$

UDP: User-Defined Dynamic Model Parameters

Function
This command is used to set the upper limits of the dynamic model (velocity, acceleration).

Command Format

$PASHS,UDP,f1,f2,f3,f4[*cc]$

Syntax

$PASHS,UDP,f1,f2,f3,f4[*cc]$

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>f1</td>
<td>Maximum expected horizontal velocity in m/s.</td>
<td>0-100 000</td>
<td>100 000</td>
</tr>
<tr>
<td>f2</td>
<td>Maximum expected horizontal acceleration in m/s/s.</td>
<td>0-100</td>
<td>100</td>
</tr>
<tr>
<td>f3</td>
<td>Maximum expected vertical velocity in m/s.</td>
<td>0-100 000</td>
<td>100 000</td>
</tr>
<tr>
<td>f4</td>
<td>Maximum expected vertical acceleration in m/s/s.</td>
<td>0-100</td>
<td>100</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
<td>-</td>
</tr>
</tbody>
</table>

Example
Setting the dynamic model:

$PASHS,UDP,10,1,2,0.5*1D$
Comments
The user-defined dynamic model is activated by the $PASHS,DYN,9 command. Note that when the adaptive dynamic mode (DYN,8) is selected, the user-defined model is automatically excluded from the possible models that could best describe the current receiver dynamics.

Related Commands
$PASHQ,UDP (query command)
$PASHS,DYN

UPL,PAR: Setting the Firmware Upgrade Procedure

Function
This command allows you to decide on whether firmware upgrades will take place using an internal upgrade file copied earlier to the board’s internal memory, or using a connection to an FTP server to download the upgrade file. If an FTP is used, the command also allows you to fully define access to this server.

Command Format Syntax
$PASHS,UPL,PAR[,MOD,d1][,ADD,s2][,PRT,d3][,LGN,s4][,PWD,s5][,PTH,s6][*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mod,d1</td>
<td>Upgrade mode:</td>
<td>0, 1</td>
<td>0</td>
</tr>
<tr>
<td>ADD,s2</td>
<td>IP address or host name</td>
<td>32 characters max.</td>
<td></td>
</tr>
<tr>
<td>PRT,d3</td>
<td>Port number</td>
<td>0-65535</td>
<td>21</td>
</tr>
<tr>
<td>LGN,s4</td>
<td>Login</td>
<td>32 characters max.</td>
<td></td>
</tr>
<tr>
<td>PWD,s5</td>
<td>Password</td>
<td>32 characters max.</td>
<td></td>
</tr>
<tr>
<td>PTH,s6</td>
<td>Path used on the FTP server</td>
<td>255 characters max.</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
<td></td>
</tr>
</tbody>
</table>

Example
$PASHS,UPL,PAR,MOD,1,ADD,ftp.intec.com,PRT,21,LGN,spectra,PWD,u 6huz8,PTH,my folder*7F

Related Commands
$PASHQ,UPL
$PASHS,UPL,UPG
$PASHQ,UPL,LST

UPL,UPG: Upgrading the Receiver Firmware from FTP

Function This command is used to download a firmware upgrade from the FTP server declared with $PASHS,UPL,PAR, and then perform the upgrade.

Command Format Syntax

$PASHS,UPL,UPG,[s1]*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Name of the upgrade file that will be first downloaded to the receiver and then used to perform the firmware upgrade.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The file name can contain a relative path to the path defined by $PASHS,UPL,PAR.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• If s1 is missing or only consists of a path, then "MB2_upgrade_v1.2.tar" is downloaded, provided there is only one of these files available on the FTP server, otherwise the command will be NAKed.</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Example

Upgrading from file "MB2_upgrade_v1.2.tar" found on the FTP server:

$PASHS,UPL,UPG,MB2_upgrade_v1.2.tar*50

After successful completion of the file transfer to the receiver, the following response line is returned:

$PASHR,UPL,REBOOT,MB2_upgrade_v1.2.tar*63

Then, communication with the receiver is suspended until upgrade installation is complete.

Should the file transfer fail, the following response line will appear:

$PASHR,UPL,FAIL,MB2_upgrade_v1.2.tar*60

Related Commands

$PASHQ,UPL
$PASHS,UPL,PAR
$PASHQ,UPL,LST
VIP: Defining a Virtual Port

Function
This command is used to define a virtual port. Using a virtual port is possible only after it has been associated with a physical port. It is indeed through the physical port that the virtual port can be accessed.

Command Format Syntax

$PASHS,VIP,c1,c2[*cc]
$PASHS,VIP,c1,OFF[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>Virtual port</td>
<td>Z</td>
</tr>
<tr>
<td>c2</td>
<td>Physical port</td>
<td>A, B, C, D, F, I, P, Q, M, U</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Comments

- To date, only virtual port “Z” can be defined. Port Z may be associated with any of the existing physical ports. By default, the virtual port is OFF.
- The transport layer used to create a virtual port is the ATM,DAT,EXT message (see ATOM Reference Manual). The frame of this message always includes a single, complete, original receiver message (any of those described in this manual).

Example
Delivering simultaneously both corrections and raw data on port A:

- Delivering corrections on physical port A:
 $PASHS,ATM,RNX,A,ON,0.1,&SCN,204*48

- Delivering raw data on virtual port Z associated with physical port A:
 $PASHS,VIP,Z,A,*21
 $PASHS,ATM,RNX,Z,ON,0.1,&SCN,204*53

Turning off virtual port Z:
 $PASHS,VIP,Z,OFF,*2F
WEB,OWN: Setting Owner Information

Function
This command is used to define the owner information displayed on the home page of the Web Server.

Command Format Syntax
$PASHS,WEB,OWN,s1,s2,s3,s4[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Company name</td>
<td>255 characters max.</td>
</tr>
<tr>
<td>s2</td>
<td>Administrator name</td>
<td>255 characters max.</td>
</tr>
<tr>
<td>s3</td>
<td>Administrator email</td>
<td>255 characters max.</td>
</tr>
<tr>
<td>s4</td>
<td>Administrator phone number</td>
<td>255 characters max.</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>00-FF</td>
</tr>
</tbody>
</table>

Example
$PASHS,WEB,OWN,Ashtech,Peter Smith,psmith@ashtech.com,0228093800*5C

Relevant Query Command
$PASHQ,WEB

See Also
$PASHS,WEB,PAR

WEB,PAR: Web Server Control & Administrator Profile

Function
This command is used to enable or disable the use of the Web Server and define the profile of the receiver administrator. There is necessarily one—and just one—administrator profile per receiver.

Command Format Syntax
$PASHS,WEB,PAR,s1[,s2,s3[,d4]][*cc]
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Enables (ON) or disables (OFF) the Web Server</td>
<td>ON, OFF</td>
<td>ON</td>
</tr>
<tr>
<td>s2</td>
<td>Administrator login</td>
<td>32 char. max.</td>
<td>admin</td>
</tr>
<tr>
<td>s3</td>
<td>Administrator password</td>
<td>32 char. max.</td>
<td>password</td>
</tr>
<tr>
<td>d4</td>
<td>httpd port</td>
<td>0-65535</td>
<td>80</td>
</tr>
<tr>
<td>d5</td>
<td>Security level:</td>
<td>0-1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>• 0: Enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1: Enabled with anonymous access</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d6</td>
<td>Privileges for anonymous access:</td>
<td>0-3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>• 0: No privileges</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1: Only downloading files is allowed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2: Only deleting files is allowed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 3: Downloading or deleting files is allowed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
<td></td>
</tr>
</tbody>
</table>

Example

Enabling the use of the Web Server with specific login and password on httpd port 2500:

$PASHS,WEB,PAR,ON,Smith,u7lmyt,2500*69

Comments

- The login and password are NOT set to their default values when running the $PASHS,RST or $PASHS,INI command.
- The httpd port is used to access the Web Server through the network.
 If for example the IP address of the receiver is 10.20.2.18 and d4=2500, you should enter the following in the address bar of your web browser to open the Web Server:
 10.20.2.18:2500

See Also

$PASHQ,WEB (relevant query command)
$PASHS,WEB,PAR

ZDA: Setting Date & Time

Function

This command is used to set the date and time in the receiver.
Command Format

Syntax

$PASHS.ZDA,m1,d2,d3,d4[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>m1</td>
<td>UTC time (hh:mm:ss)</td>
<td>00000.00-235959.99</td>
</tr>
<tr>
<td>d2</td>
<td>Current day</td>
<td>01-31</td>
</tr>
<tr>
<td>d3</td>
<td>Current month</td>
<td>01-12</td>
</tr>
<tr>
<td>d4</td>
<td>Current year</td>
<td>1980-9999</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Example

$PASHS.ZDA,151145.00,13,03,2008*0A

Relevant Query Command

$PASHQ.ZDA
Chapter 8. Query Command Library

This chapter provides a detailed description of all the \$PASHQ commands applicable to the MB-Two board. The commands are listed in alphabetical order, irrespective of their use domain.

Command Format Syntax
\$PASHQ,3DF[^cc]

Response Format

Syntax \$PASHR,3DF,s1[,d2][,d3][,d4][],V12,f5,f6,f7,f8,V13,f9,f10,f11,f12,V14,f13,f14, f15,f16,CLB,d17,OFS,f18,f19,f20,ANG,d21,MXB,f22,OUT,s23,s24[^cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
</table>
| s1 | Attitude processing status:
 • OFF: Processing disabled
 • HED: Heading processing active
 • ADU: Attitude processing active | OFF, HED, ADU |
| d2 | Number of 1st baseline (i.e. referring to V12) used in attitude processing. | 1-3 |
| d3 | Number of 2nd baseline (i.e. referring to V13) used in attitude processing. | 1-3 |
| d4 | Number of 3rd baseline (i.e. referring to V14) used in attitude processing. | 1-3 |
| V12,f5-f8 | Calibrated or entered V12 vector components and corresponding RMS value, in meters. | |
| V13,f9-f12| Calibrated or entered V13 vector components and corresponding RMS value, in meters. | |
| V14,f13-f16| Calibrated or entered V14 vector components and corresponding RMS value, in meters. | |
| CLB,d17 | Calibration indicator:
 • "0": Calibration complete
 • "1": Calibration in progress
 • Empty: Attitude mode off | |
| OFS,f18-f20| Heading offset, pitch offset, roll offset respectively, all in degrees (from \$PASHS,3DF,OFS) | |
Query Command Library

Example

$PASHQ,3DF

$PASHR,3DF,HED,2,V12,45.870,,0.003,V13,,,,,V14,,,,,CLB,1,OFS,0.000,0.000,0.000,ANG,15,MXB,0.010*,OUT,FST,FLX*1A

ALR: Listing Current Alarms

Function

This command queries the receiver for all the currently raised alarms. You can select which alarm levels you want to list.

Command Format

Syntax

$PASHQ,ALR[d][*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>Alarm level: 1: High and medium</td>
<td>1</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Response Format

Syntax

$PASHR,ALR,d1,d2,c3,d4,d5,d6*cc
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Alarm code</td>
<td>0-255</td>
</tr>
<tr>
<td>d2</td>
<td>Alarm sub-code</td>
<td>0-255</td>
</tr>
<tr>
<td>c3</td>
<td>Stream ID reporting the alarm (if relevant, otherwise blank field):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• A, B, D: Serial port</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• C: USB serial port</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• M: Internal memory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• F, I, P, Q: TCP/IP stream</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• U: USB memory</td>
<td>A-D, F, I, P, Q, M, U</td>
</tr>
<tr>
<td>s4</td>
<td>Alarm category</td>
<td>INPUT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MEMORY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NETWORK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OTHER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PVT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RADIO</td>
</tr>
<tr>
<td>d5</td>
<td>Alarm level:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1: Medium</td>
<td>1, 2</td>
</tr>
<tr>
<td></td>
<td>• 2: High</td>
<td></td>
</tr>
<tr>
<td>s6</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Example
$PASHQ,ALR
$PASHR,ALR,2,0,B,INPUT,"Bad parameter"*1F

ANH: Antenna Height

Function
This command allows you to read the entered antenna height as well as the measurement type used for each antenna.

Command Format
Syntax
$PASHQ,ANH[*cc]

Response Format
Syntax
$PASHR,d0,ANH,f1,c2*cc
Query Command Library

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d0</td>
<td>Antenna identification:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1: Primary antenna</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2: Secondary antenna</td>
<td></td>
</tr>
</tbody>
</table>
| f1 | Antenna height. | 0-6.553 m
| | 6.553-100 m | |
| c2 | Antenna height measurement type: |
| | • V: Vertical measurement |
| | • S: Slant measurement |
| *cc | Checksum | *00-*FF |

Example

$PASHQ,ANP
$PASHR,1,ANH,1.604,V*55
$PASHR,2,ANH,1.600,V*52

Related Commands

$PASHS,ANH (set command)
$PASHQ,ANR

ANP: Antenna Parameters

Function
This command allows you to read the antenna parameters of the specified antenna name.

Command Format

Syntax

$PASHQ,ANP,s1[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Antenna name (case sensitive). The command will be NAKed if this field is missing.</td>
<td>31 characters max.</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Response Format

$PASHQ,ANP,ASH111660
BEGIN ANTENNA
ASH111660
L1 N: +000.30 E: -000.70 U: +075.40
L1 PAE: +000.0 +000.7 +001.7 +002.8 +004.1 +005.3 +006.3 +007.2 +007.7 +007.8

322
ANP,OUT: Virtual Antenna

Function
This command returns the name of the virtual antenna currently selected in the receiver. The choice of virtual antenna reported by the command is effective for the two antennas.

Command Format
Syntax
$PASHQ,ANP,OUT[*cc]

Parameters
None.

Response Format
Syntax
$PASHR,ANP,OUT,s1*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Name of the virtual antenna used. If s1 is blank, that means no virtual antenna is selected.</td>
<td>31 characters max.</td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Example
$PASHQ,ANP,OUT
$PASHR,ANP,OUT,ADVNULLANTENNA*72

Relevant Set Command
$PASH,Q,ANP,OUT

ANP,OWN: Local Antenna Used

Function
This command returns the name of the GNSS antenna currently used by the receiver. The command returns a line per antenna.
Query Command Library

Command Format

Syntax

```plaintext
$PASHQ,ANP,OWN[*cc]
```

Parameters

None.

Response Format

Syntax

```plaintext
$PASHR,d0,ANP,OWN,s1[,s2][,s3]*cc
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
</table>
| d0 | Antenna identification:
• 1: Primary antenna
• 2: Secondary antenna | 1, 2 |
| s1 | Name of the local antenna | 31 characters max. |
| s2 | Antenna serial number | 31 characters max. |
| s3 | Antenna setup ID | 0-255 |
| "cc" | Checksum | *00-*FF |

Example

```plaintext
$PASHR,1,ANP,OWN,UNKNOWN,,0*18
$PASHR,2,ANP,OWN,ASH11661,,0*55
```

Related Commands

$PASHS,ANP,OWN (set command)
ANP,REF: Antenna Used at the Base

Function
This command returns the name of the GNSS antenna assumed to be used by the base currently sending data to the interrogated receiver (a rover).

Command Format
Syntax
$PASHQ,ANP,REF[*cc]$

Parameters
None.

Response Format
Syntax
$PASHR,ANP,REF,s1*cc$

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Name of the antenna used at the base</td>
<td>31 characters max.</td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Example
$PASHQ,ANP,RCV$

$PASHR,ANP,RCV,ASH802147,-2.00,0.70,103.00,-3.4,-2.2,103.80*09$

Related Commands
$PASHS,ANP,REF$ (set command)
ANR: Antenna Reduction Mode

Function
This command is used to read the current setting for the antenna reduction mode. This setting defines the physical location on the system for which the position is computed. This setting applies to both antennas.

Command Format Syntax
$PASHQ,ANR[*cc]

Response Format Syntax
$PASHR,ANR,s1*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Antenna reduction mode:</td>
<td>OFF, ON, ARP, PC1, SPT</td>
</tr>
<tr>
<td></td>
<td>OFF or PC1: The computed position is assumed to be the location of the antenna’s L1 phase center.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ON or SPT: The computed position is assumed to be the location of the ground mark.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ARP: The computed position is assumed to be the location of the Antenna Reference Plane (ARP).</td>
<td></td>
</tr>
</tbody>
</table>

Example
$PASHQ,ANR
$PASHR,ANR,ON*04

Related Commands
$PASHS,ANR
$PASHS,ANH

ANT: Antenna Height

Function
This command is used to read the current setting for the antenna height (one response line per antenna).

Command Format Syntax
$PASHQ,ANT[*cc]
Query Command Library

Response Format

Syntax

\$PASHR,d0,ANT,f1,f2,f3*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
</table>
| d0 | Antenna identifier:
• 1: Primary antenna
• 2: Secondary antenna | 1, 2 |
| f1 | Slant height measurement, from ground mark to antenna edge (SHMP) | 0-6.553 m
6.553-99.999 m |
| f2 | Antenna radius: horizontal distance from the geometrical center to the antenna edge. | 0-6.553 m |
| f3 | Antenna vertical offset:
• Offset between SHMP and ARP if both slant height measurement and antenna radius are different from zero.
• Offset between ground mark and ARP if either slant height measurement or radius is zero. | ± 0-6.553 m
6.553-99.999 m |
| *cc | Checksum | 00-FF |

Example

\$PASHQ,ANT
\$PASHR,1,ANT,0,0,2.000*32
\$PASHR,2,ANT,0,0,1.985*36

Related Commands

\$PASH,ANT
\$PASHQ,ANR
\$PASHQ,ANH

ARA: Attitude Rate and Accuracy

Function

This command is used to output the ARA message providing values and variation speeds of the different components of attitude. This messages comes as a supplement to the HPR message.

Command Format

Syntax

\$PASHQ,ARA[*cc]

Response Format

Syntax

\$PASHR,ARA,f1,m2,f3,f4,f5,f6,f7,f8,f9*cc
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>f1</td>
<td>Fixed parameter set to "0". If it weren't '0', then the next f3-f8 fields in the response line would provide invalid values.</td>
<td>0</td>
</tr>
<tr>
<td>m2</td>
<td>Current UTC time of attitude fix (hhmmss.ss)</td>
<td>000000.00-235959.99, same as in $PASHQ,POS</td>
</tr>
<tr>
<td>f3</td>
<td>Heading speed in degrees/second</td>
<td>Full range of real variables</td>
</tr>
<tr>
<td>f4</td>
<td>Pitch speed in degrees/second</td>
<td>Full range of real variables</td>
</tr>
<tr>
<td>f5</td>
<td>Roll speed in degrees/second</td>
<td>Full range of real variables</td>
</tr>
<tr>
<td>f6</td>
<td>RMS heading angle, in degrees</td>
<td>Full range of real variables</td>
</tr>
<tr>
<td>f7</td>
<td>RMS pitch angle, in degrees</td>
<td>Full range of real variables</td>
</tr>
<tr>
<td>f8</td>
<td>RMS roll angle, in degrees</td>
<td>Full range of real variables</td>
</tr>
<tr>
<td>f9</td>
<td>Attitude extrapolation interval, in milliseconds</td>
<td>Empty if not defined</td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Comments

- Variation speeds of angles may be provided even though the values of these angles are missing. Reciprocally, speed values may be missing while the corresponding angles are determined and output.
- Speed values are signed as follows:
 - A minus sign for pitch speed means going downwards and a positive sign means going upwards.
 - A minus sign for roll speed means going to the left (to port) and a positive sign means going to the right (to starboard).
 - A minus sign for heading speed means the bow turning to the left and a positive sign means the bow turning to the right.

Example

$PASHQ,ARA
$PASHR,ARA,0.103024.00,-0.016,-0.036,.0.154,0.271,0*26
$PASHR,ARA,0.103025.00,0.011,0.004,.0.154,0.271,0*21
$PASHR,ARA,0.103026.00,-0.001,-0.002,.0.154,0.271,0*25
$PASHR,ARA,0.103027.00,-0.005,-0.006,.0.155,0.271,0*26
$PASHR,ARA,0.103028.00,-0.016,0.004,.0.155,0.271,0*07
$PASHR,ARA,0.103029.00,-0.002,.0.155,0.271,0*00
$PASHR,ARA,0.103030.00,-0.026,0.004,.0.155,0.271,0*0D

Related Commands

$PASHS,NME
Automatic Output of ARA Messages

This is a reminder on how to output ARA messages at regular intervals of time: Use the $PASHS,NME command with the syntax below:

$PASHS,NME,ARA,<port_ID>,ON,<Rate>

For more details on the $PASHS,NME command, refer to the Set Command Library Chapter.

As an example, the command below will output ARA messages on port A at a rate of 0.2 second:

$PASHS,NME,ARA,A,ON,0.2

ARR: Vector & Accuracy Data

Function

This command is used to output the ARR message, which is an extension of the legacy VEC message. VCT can be requested only in a mode set up by $PASHS,RTK. The baseline vector is oriented from the base to the rover.

Command Format Syntax

$PASHQ,ARR[*cc]

Response Format Syntax

$PASHR,ARR,d0,d1,d2,m3,f4,f5,f6,f7,f8,f9,f10,f11,f12,d13,d14,d15,d16*cc
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d0</td>
<td>Vector number</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>d1</td>
<td>Vector mode:</td>
<td>0-3, 5</td>
</tr>
<tr>
<td></td>
<td>• 0: Invalid baseline</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1: Differential</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2: RTK float</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 3: RTK fixed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 5: Other (dead reckoning, bad accuracy, difference between standalone positions). Messages with d1=5 may further be masked if users only want proven vector estimates.</td>
<td></td>
</tr>
<tr>
<td>d2</td>
<td>Number of SVs used in baseline computation (LT portion)</td>
<td>0-99</td>
</tr>
<tr>
<td>m3</td>
<td>UTC time (hhmmss.ss)</td>
<td>000000.00-235959.99</td>
</tr>
<tr>
<td>f4</td>
<td>Delta antenna position, ECEF 1st coordinate (in meters)</td>
<td>±999999.999</td>
</tr>
<tr>
<td>f5</td>
<td>Delta antenna position, ECEF 2nd coordinate (in meters)</td>
<td>±999999.999</td>
</tr>
<tr>
<td>f6</td>
<td>Delta antenna position, ECEF 3rd coordinate (in meters)</td>
<td>±9999.999</td>
</tr>
<tr>
<td>f7</td>
<td>1st coordinate of standard deviation</td>
<td>99.999</td>
</tr>
<tr>
<td>f8</td>
<td>2nd coordinate of standard deviation</td>
<td>99.999</td>
</tr>
<tr>
<td>f9</td>
<td>3rd coordinate of standard deviation</td>
<td>99.999</td>
</tr>
<tr>
<td>f10</td>
<td>1st/2nd coord. correlation</td>
<td>±99.999999</td>
</tr>
<tr>
<td>f11</td>
<td>1st/3rd coord. correlation</td>
<td>±99.999999</td>
</tr>
<tr>
<td>f12</td>
<td>2nd/3rd coord. correlation</td>
<td>±99.999999</td>
</tr>
<tr>
<td>c13</td>
<td>Reference data ID</td>
<td>1, 2, port letter</td>
</tr>
<tr>
<td>d14</td>
<td>Vector coordinate frame ID:</td>
<td>0-2</td>
</tr>
<tr>
<td></td>
<td>• 0: XYZ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1: ENU centered on rover</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2: ENU centered on base</td>
<td></td>
</tr>
<tr>
<td>d15</td>
<td>Vector operation:</td>
<td>0-2</td>
</tr>
<tr>
<td></td>
<td>• 0: Fixed mode (vector length is constrained)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1: Calibration (vector length is being calibrated)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2: Flex mode</td>
<td></td>
</tr>
<tr>
<td>d16</td>
<td>Clock assumption:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 0: Clock is assumed to be different for the “head” and “tail” of the vector (see Comments below)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1: Clock is assumed to be the same for the “head” and “tail” of the vector (see Comments below)</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>00-FF</td>
</tr>
</tbody>
</table>

Comments
- “Head” refers to the location the vector arrow points to (that is, the rover location) while “Tail” refers to the other
end of the vector (the vector origin), which represents the moving base location.

- So depending on the operating mode (internal heading, attitude, etc.) and the board configuration (one-sensor, dual-sensor, multi-board), field c13 will be an internal sensor number (case of internal heading or attitude) and/or and external sensor ID identified by the ID of the port through which its corrections enter the board.

It is assumed that the “head” of a vector may be identified by reading $PASHD messages (see page 40, page 40 or page 40).

Example

$PASHQ,ARR
$PASHR,ARR,2,3,26,100613.00,-1.445,0.298,1.320,0.005,0.003,0.006,-
0.021143,0.573289,0.184693,D,0,1,0*5D

$PASHR,ARR,3,3,26,100613.00,-1.179,2.232,1.151,0.005,0.003,0.006,-
0.021143,0.573289,0.184693,D,0,1,0*50

Related Commands

$PASHS,NME

Automatic Output of ARR Messages

This is a reminder on how to output ARR messages at regular intervals of time: Use the $PASHS,NME command with the syntax below:

$PASHS,NME,ARR,<port_ID>,ON,<Rate>

For more details on the $PASHS,NME command, refer to the Set Command Library Chapter.

As an example, the command below will output ARR messages on port A at a rate of 0.2 second:

$PASHS,NME,ARR,A,ON,0.2

AST: Status of Antennas

Function

This command queries the board for the status of the main antenna (if the board is in SOLO mode) or of the two antennas (if in DUO mode).

Command Format

Syntax

$PASHQ,AST[cc]
Response Format

Syntax

```
$PASHR,d1,AST,s2,d3,s4*cc
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Antenna input index:</td>
<td>1, 2</td>
</tr>
<tr>
<td></td>
<td>• 1: Main antenna (antenna #1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2: Antenna #2</td>
<td></td>
</tr>
<tr>
<td>s2</td>
<td>Antenna status:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• CON: Antenna is connected (DC output current is in the range 5 mA to 150 mA)</td>
<td>CON, NC, SHR, UNK</td>
</tr>
<tr>
<td></td>
<td>• NC: No antenna connected (DC output current is less than 5 mA)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• SHR: Antenna cable shorted (DC output current is greater than 150 mA)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• UNK: Status unknown</td>
<td></td>
</tr>
<tr>
<td>d3</td>
<td>RF signal level:</td>
<td>0...4095 or empty</td>
</tr>
<tr>
<td></td>
<td>• Empty field if s2= NC, SHR or UNK</td>
<td></td>
</tr>
<tr>
<td>s4</td>
<td>Always OFF.</td>
<td>OFF</td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>*00-FF</td>
</tr>
</tbody>
</table>

Example

With two antennas used (DUO mode active):

$PASHQ,AST

$PASHR,1,AST,CON,3516,OFF*0F

$PASHR,2,AST,3842,OFF*00

ATH: Listing Anti-Theft Parameters

Function

This command queries the receiver for the current anti-theft parameters.

Command Format

Syntax

```
$PASHQ,ATH[*cc]
```

Parameters

None.

Response Format

Syntax

```
$PASHR,ATH,s1,s2,SMS,d3,...,d7,EML,d8,...,d12,MSG,s13,s14,s15[*cc]
```
Query Command Library

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Anti-theft protection current status:</td>
<td>ON, OFF, ALR</td>
</tr>
<tr>
<td>s2</td>
<td>Password (only if anti-theft protection is OFF)</td>
<td>64 char. max.</td>
</tr>
<tr>
<td>d3...s15</td>
<td>Not applicable</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Examples

```
$PASHQ,ATH
$PASHR,ATH,OFF,password,SMS,.....,EML,.....,MSG,.....,*29

$PASHQ,ATH
$PASHR,ATH,ON*cc
```

Related Commands

- $PASHS,ATH,ON
- $PASHS,ATH,OFF
- $PASHS,ATH,PWD
- $PASHS,ATH,EML
- $PASHS,ATL,SMS
- $PASHS,ATH,MSG

ATL: Debug Data Recording

Function

This command queries the receiver for the current status of the data recording function used for debugging (ATL data).

Command Format

Syntax

```
$PASHQ,ATL[*cc]
```

Response Format

Syntax

```
$PASHR,ATL,s1,d2,c3,f4,d5,d6,d7*cc
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>ON/OFF/AUT status:</td>
<td>ON, OFF, AUT</td>
</tr>
<tr>
<td></td>
<td>• ON: ATL data recording is enabled but will not re-start after a power cycle.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• OFF: ATL data recording is disabled.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• AUT: ATL data recording is enabled and will re-start after a power cycle.</td>
<td></td>
</tr>
<tr>
<td>d2</td>
<td>Identification of output port used:</td>
<td>A, B, C, D, I, blank</td>
</tr>
<tr>
<td></td>
<td>• Serial Port: A, B, D</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• USB serial port: C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• TCP/IP port: I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• (empty if no output)</td>
<td></td>
</tr>
<tr>
<td>c3</td>
<td>Recording status:</td>
<td>R, S</td>
</tr>
<tr>
<td></td>
<td>• R: The receiver is currently recording data for debugging.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• S: No debug data currently recorded.</td>
<td></td>
</tr>
<tr>
<td>f4</td>
<td>Output rate, in seconds (default: 1 sec.)</td>
<td>0.05, 0.1, 0.2, 0.5, 1</td>
</tr>
<tr>
<td>d5</td>
<td>Configuration index</td>
<td>0, 1</td>
</tr>
<tr>
<td>d6</td>
<td>Memory location:</td>
<td>0, 2</td>
</tr>
<tr>
<td></td>
<td>• 0: Internal memory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2: USB memory</td>
<td></td>
</tr>
<tr>
<td>d7</td>
<td>Maximum duration, in minutes (0: unlimited duration)</td>
<td>0, 15, 20, 30, n x 60 with n between 1 and 24</td>
</tr>
<tr>
<td>cc</td>
<td>Checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Examples

ATL data recording disabled:

```
$PASHQ,ATL*2E
$PASHR,ATL,OFF,,S,1,0*cc
```

ATL data recording enabled and in progress:

```
$PASHQ,ATL*2E
$PASHR,ATL,ON,,R,1,0*cc
```

ATL data recording is enabled but for some reason, no data is being recorded:

```
$PASHQ,ATL*2E
$PASHR,ATL,ON,,S,1,0*cc
```

ATL data output set on port A:

```
$PASHQ,ATL*2E
$PASHR,ATL,OFF,A,S,1,0*cc
```
ATT: Heading, Roll and Pitch

Function
This command allows you to output the heading, roll and pitch message.

Command Format

Syntax

$PASHQ,ATT[^cc]

Response Format

Syntax

$PASHR,ATT,f1,f2,f3,f4,f5,f6,d7[^cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>f1</td>
<td>Week time in seconds.</td>
<td>0000000.00-604799.99</td>
</tr>
<tr>
<td>f2</td>
<td>True heading angle in degrees.</td>
<td>0.00-359.99999</td>
</tr>
<tr>
<td>f3</td>
<td>Pitch angle in degrees.</td>
<td>±90.00000</td>
</tr>
<tr>
<td>f4</td>
<td>Roll angle in degrees.</td>
<td>±90.00000</td>
</tr>
<tr>
<td>f5</td>
<td>Carrier measurement RMS error, in meters.</td>
<td>Full range of real variables</td>
</tr>
<tr>
<td>f6</td>
<td>Baseline RMS error, in meters.</td>
<td>Full range of real variables</td>
</tr>
<tr>
<td>d7</td>
<td>Integer ambiguity is "Fixed" or "Float":
• 0: Fixed
• >0: Float</td>
<td>0, >0</td>
</tr>
<tr>
<td>^cc</td>
<td>Checksum</td>
<td>"00-FF"</td>
</tr>
</tbody>
</table>

Comments

- All parameters are necessarily output at every epoch, except for f5 and f6 which may not be output for fractions of a second.
- This message can still potentially be output when attitude or heading is disabled (see 3DF), provided a differential mode is still running, in which case the reported heading stands for the baseline azimuth (base to rover) and the reported pitch stands for the baseline elevation.
- When the heading mode is enabled and as long as calibration is in progress, field f6 (baseline RMS error) is forced to zero. This field is therefore indicative of the calibration status:
 - f6 = 0, calibration in progress
 - f6 ≠ 0, calibration complete, heading computed and output
• Field $d_7 = 0$ does not necessarily mean that the position message (e.g. POS) will report a “fixed” position.
• Field $d_7 \neq 0$ does not necessarily mean that the attitude solution is bad. With long baselines, a sub-degree attitude accuracy may be achieved even if it’s a float-ambiguity solution.
• During calibration, fields f2 to f4 are reported to be invalid while some other fields may still have sense.

Example
Querying the heading and roll/pitch message on the current port:

\$PASHQ,ATT
\$PASHR,ATT,310080.0,248.57,+04.22,,0.0027,0.0000,0*2B

Automatic Output of ATT Messages
This is a reminder on how to output ATT messages at regular intervals of time: Use the \$PASHS,NME command with the syntax below:

\$PASHS,NME,ATT,<port_ID>,ON,<Rate>

For more details on the \$PASHS,NME command, refer to the Set Command Library Chapter.
As an example, the command below will output ATT messages on port A at a rate of 0.5 second:

\$PASHS,NME,ATT,A,ON,0.5

AVR: Trimble Time-Yaw-Tilt-Range Message

Function
This command is used to output an AVR message. AVR is similar to the existing Trimble Yaw-Tilt-Range message. It is available only for baselines involved in 3DF processing.
When the AVR message is set to be output at regular intervals of time, and at a given moment the fields in the message happen to be all empty, be aware this won’t prevent the board from continuing to normally output the message at the required output rate (as opposed to some other messages which stop being output when they are empty).
NOTE: AVR data are affected by 3DF,OFS parameters and 3DF,OUT settings.

Command Format Syntax
\$PASHQ,AVR[*cc]
Response Format Syntax
$PTNL_AVR,m1,f2,Yaw,f3,Tilt,f4,s5,f6,d7,f8,d9*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>m1</td>
<td>Current UTC time of vector fix (hhmmss.ss), same as time field in HPR message</td>
<td>000000.00-235959.99</td>
</tr>
<tr>
<td>f2,Yaw</td>
<td>Yaw angle, in degrees. Message provides same value as “Heading” in HPR message. “+0.0000” if not available.</td>
<td></td>
</tr>
<tr>
<td>f3,Tilt</td>
<td>Tilt angle, in degrees. Message provides same value as “Pitch” in HPR message. “+0.0000” if not available.</td>
<td></td>
</tr>
<tr>
<td>f4,s5</td>
<td>Two empty fields</td>
<td></td>
</tr>
<tr>
<td>f6</td>
<td>Range, in meters, representing the baseline length computed by the corresponding RTK engine. “0.000” if not available. In fixed mode, this field should report a value close to the actual baseline length. Variations can be of the centimeter level in flex mode, and of the millimeter level in fixed mode.</td>
<td></td>
</tr>
<tr>
<td>d7</td>
<td>GNSS quality indicator: • 0: Fix not available or invalid • 1: Autonomous position; yaw and tilt are invalid. • 2: Differential carrier phase solution RTK (float) • 3: Differential carrier phase solution RTK (fixed) • 4: Differential code-based solution; yaw and tilt are invalid.</td>
<td>0-4</td>
</tr>
<tr>
<td>f8</td>
<td>PDOP (same value as the one reported in the HPR message. “0.0” if not available.</td>
<td></td>
</tr>
<tr>
<td>d9</td>
<td>Number of satellites being used in the solution (i.e. for which carrier phases were used in RTK engine). “0.0” if not available. Not necessarily the same number as in HPR message.</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum *00-*FF</td>
<td></td>
</tr>
</tbody>
</table>

Example
$PTNL_AVR,212405.20,+52.1531,Yaw,-0.0806,Tilt,,12.575,3,1.4,16*39

Related Command
$PASHS,NME

Automatic Output of AVR Messages
This is a reminder on how to output AVR messages at regular intervals of time: Use the $PASHS,NME command with the syntax below:
$PASHS,NME,AVR,<port_ID>,ON,<Rate>
For more details on the $PASHS,NME command, refer to the Set Command Library Chapter.

As an example, the command below will output AVR messages on port A at a rate of 0.5 second:

$PASHS,NME,AVR,A,ON,0.5

BDS: BeiDou Tracking Status

Function
This command returns the current BeiDou tracking status.

Command Format

Syntax

$PASHQ,BDS[*cc]

Parameters
None.

Response Format

Syntax

$PASHR,BDS,s1,USE,n(c2)*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>BeiDou tracking status:</td>
<td>ON, OFF</td>
</tr>
<tr>
<td></td>
<td>• ON: Currently tracking and using BeiDou satellites</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• OFF: Not tracking BeiDou satellites</td>
<td></td>
</tr>
<tr>
<td>n(c2)</td>
<td>Provides tracking status of each BeiDou satellite:</td>
<td>Y, N</td>
</tr>
<tr>
<td></td>
<td>• Y: Tracking enabled for this satellite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• N: Tracking disabled for this satellite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>This status is provided n times, where n is the number of satellites in the BeiDou constellation. See also the $PASHS,<GNS>,USE command.</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Example

$PASHQ,BDS

$PASHR,BDS,ON,USE,YYY
Related Commands $PASHS,BDS (Set command)

BLN: Reading Baseline Definitions & Status

Function This command is used to check the definition and status of each baseline you set with $PASHS,BLN.

Command Format Syntax
$PASHQ,BLN[*cc]

Response Format Syntax
For each baseline:
$PASHR,d1,BLN,s2,BAS,s3,S4,ROV,s5,ARR,s6,f7,f8,f9,f10,d11*cc
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Client ID (baseline number).</td>
<td>1-3</td>
</tr>
<tr>
<td>s2</td>
<td>Baseline status or type:</td>
<td>PRI, ON, SAM, OFF</td>
</tr>
<tr>
<td></td>
<td>• PRI: Primary baseline, processed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ON: Baseline processed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• SAM: Supplementary baseline.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• OFF: Baseline disabled (not processed)</td>
<td></td>
</tr>
<tr>
<td>s3</td>
<td>Base data source:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• A, B, C, etc.: A board’s physical or virtual port through which external data enter the board.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• “?” : Automatic selection of the board’s physical port through which external data enter the board.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1, 2, 3, etc: Sensor internal to the board. The figure indicates the number of the sensor used.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• A1, A2, B1, B2, etc.: Multi-board configuration. The letter indicates the local board’s port to which an external multi-antenna board is connected, and the figure indicates the number of the sensor (on that external board) that is the source of data to be processed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• “?” , “?” , etc.: Multi-board configuration. The “?” symbol indicates that there is an automatic selection of the local board’s physical port through which data enter the local board, and the figure indicates the number of the sensor (on the external board) that is the source of data to be processed.</td>
<td></td>
</tr>
<tr>
<td>s4</td>
<td>Base status:</td>
<td>S, M</td>
</tr>
<tr>
<td></td>
<td>• S: Static base</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• M: Moving base</td>
<td></td>
</tr>
<tr>
<td>s5</td>
<td>Same as s3 above, but for rover data source.</td>
<td>Same as s3</td>
</tr>
<tr>
<td>s6</td>
<td>Arrow (heading) mode status (ON or OFF)</td>
<td>ON, OFF</td>
</tr>
<tr>
<td>f7, f8, f9</td>
<td>XYZ vector components. When only the length parameter is set or calibrated, f8 and f9 should be both “0” or empty.</td>
<td></td>
</tr>
<tr>
<td>f10</td>
<td>RMS value of calibrated or entered vector, in meters</td>
<td></td>
</tr>
<tr>
<td>d11</td>
<td>Arrow vector status:</td>
<td>0, 1, 2</td>
</tr>
<tr>
<td></td>
<td>• 0: Being calibrated</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1: Calibrated</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2: Entered</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Example

\$PASHQ,BLN

\$PASHR,1,BLN,BRI,?1,?2,ROV,1,ARR,OFF,*,TD
BRD: Reading RTK Bridge Status

Function
This command allows you to list the current settings of the RTK Bridge function.

Command Format
Syntax
$PASHQ,BRD[*cc]

Response format
Syntax
$PASHR,BRD,s1,c2[,c3]*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Availability of RTK corrections on the specified output port: • OFF: No RTK corrections forwarded to the output port. • ON: RTK corrections forwarded to the output port.</td>
<td>ON, OFF</td>
</tr>
<tr>
<td>c2</td>
<td>Input port used</td>
<td>A, B, D, C, P, Q</td>
</tr>
<tr>
<td>c3</td>
<td>Output port used</td>
<td>A, B, D, C</td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>00~FF</td>
</tr>
</tbody>
</table>

Example
$PASHQ,BRD
$PASHR,BRD,ON,P,A*1C

Relevant Set
Command
$PASHS,BRD

BRV: Reading Relative Mode Status

Function
This command is used to read the current status of the Relative mode.

Command Format
Syntax
$PASHQ,BRV[*cc]
Response Format Syntax

$PASHR,BRV,s1,d2[,d3][,d4][*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Relative mode status:</td>
<td>ON, OFF</td>
</tr>
<tr>
<td></td>
<td>• ON: Relative mode currently on.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• OFF: Relative mode currently off</td>
<td></td>
</tr>
<tr>
<td>d2</td>
<td>Index of first baseline used</td>
<td></td>
</tr>
<tr>
<td>d3</td>
<td>Index of second baseline used</td>
<td></td>
</tr>
<tr>
<td>d4</td>
<td>Index of third baseline used</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Example

$PASHQ,BRV
$PASHR,BRV,OFF*51

CAN: CAN Bus Status & Parameters

Function

This command allows you to read the current status of the CAN bus as well as its parameters.

Command Format Syntax

$PASHQ,CAN[*cc]

Response Format Syntax

$PASHR,CAN,c1,s2,BRT=d3,FMT=d4*cc
Query Command Library

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>CAN port identification</td>
<td>L</td>
</tr>
<tr>
<td>s2</td>
<td>CAN status: ON or OFF</td>
<td>ON, OFF</td>
</tr>
</tbody>
</table>
| BRT=d3 | Bit rate (in kbits/second):
| | • 0: 62.5
| | • 1: 125
| | • 2: 250 (default)
| | • 3: 500
| | • 4: 1000 | 0-4 |
| FMT=d4 | Data format:
| | • 0: Raw data
| | • 1: NMEA 2000 data | 0, 1 |
| ¢cc | Checksum | *00-FF|

Example

$PASHQ,CAN
$PASHR,CAN,L,ON,BRT=4*47

Relevant Set Command

$PASHS,CAN

COO,REF: Base Position

Function

This command is used to read the base position entered in a rover using the $PASHS,COO,REF command.

Command Format Syntax

$PASHQ,COO,REF[*cc]

Response Format Syntax

$PASHR,COO,REF,f1,f2,f3,d4*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>f1</td>
<td>X component of Cartesian base position, in meters</td>
<td></td>
</tr>
<tr>
<td>f2</td>
<td>Y component of Cartesian base position, in meters</td>
<td></td>
</tr>
<tr>
<td>f3</td>
<td>Z component of Cartesian base position, in meters</td>
<td></td>
</tr>
</tbody>
</table>
| d4 | Preference rule currently used:
| | • 0: Incoming position is preferred (default)
| | • 1: Always ignore incoming position | 0, 1 |
| ¢cc | Checksum | *00-FF|

343
Example

$PASHQ,COO,REF
$PASHR,POS,REF,2352345.2800,2717465.7080,5251459.2240,0*61

Related Commands

$PASHS,COO,REF (set command)

CST: NTRIP Caster Parameters

Function

This command is used to query the receiver for the current NTRIP caster settings.

Command Format

Syntax

$PASHQ,CST[*cc]

Response Format

Syntax

$PASHR,CST,s1,s2,d3,s4,d5,s6,s7,s8,f9,f10,s11,d12,s13,s14,c15,s16,s17,s18[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>NTRIP caster status</td>
<td>ON, OFF</td>
</tr>
<tr>
<td>s2</td>
<td>IP address of the NTRIP caster.</td>
<td>100 characters max.</td>
</tr>
<tr>
<td>d3</td>
<td>IP port number of the NTRIP caster</td>
<td>100-65535</td>
</tr>
<tr>
<td>s4</td>
<td>NTRIP caster password. This password is used by NTRIP servers (data sources) to connect to the NTRIP caster.</td>
<td>32 characters max.</td>
</tr>
<tr>
<td>s6</td>
<td>NTRIP caster identifier. Use this field to provide more information describing/identifying the NTRIP caster.</td>
<td>100 characters max.</td>
</tr>
<tr>
<td>s7</td>
<td>NTRIP caster operator: Name of the institution, agency or company running the caster.</td>
<td>100 characters max.</td>
</tr>
<tr>
<td>s8</td>
<td>Country code</td>
<td>3 characters</td>
</tr>
<tr>
<td>f9</td>
<td>Latitude in degrees.</td>
<td>±90.00</td>
</tr>
<tr>
<td>f10</td>
<td>Longitude in degrees.</td>
<td>0.00 to 359.99</td>
</tr>
<tr>
<td>s11</td>
<td>Fallback caster IP address. (Fallback caster: the caster where to connect to in case this one breaks down).</td>
<td>128 characters max</td>
</tr>
<tr>
<td>d12</td>
<td>Fallback caster IP port number</td>
<td>100-65535</td>
</tr>
<tr>
<td>s13</td>
<td>Network identifier, e.g. name of a network of GNSS permanent stations.</td>
<td>100 characters max</td>
</tr>
<tr>
<td>s14</td>
<td>Network operator: Name of the institution, agency or company running the network.</td>
<td>100 characters max</td>
</tr>
</tbody>
</table>
Query Command Library

Example

$PASHQ,CST
$PASHS,CST,ON,124.61.55.10,2102,MB2_NTRIP Caster,
Trimble,FRA,47.10,-1.00,123.12.132.12,2101,My Network,Trimble,

See also
$PASHS,CST
$PASHS,CST,USR,ADD
$PASHS,CST,USR,DEL

CST,USR: Listing NTRIP Caster Users

Function
This command is used to query the receiver for the complete list of users currently using the embedded NTRIP caster, or for the parameters of the specified user.

Command Format Syntax

$PASHQ,CST,USR,s1,d2,s3,s4,s5,s6,s7,…,s16,cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>Name of the user for which you want the receiver to return its parameters.</td>
<td>32 characters max</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Response Format Syntax

$PASHR,CST,USR,d1,d2,s3,s4,s5,s6,…,s16,cc

Parameters
The receiver returns one response line per user name.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Number of user names part of the list</td>
<td>0-100</td>
</tr>
<tr>
<td>d2</td>
<td>Index of this user name within the list</td>
<td>0-100</td>
</tr>
<tr>
<td>s3</td>
<td>User name</td>
<td>32 char. max.</td>
</tr>
<tr>
<td>s4</td>
<td>Password</td>
<td>32 char. max.</td>
</tr>
<tr>
<td>s5</td>
<td>Available mount points for this user:</td>
<td>ALL, SEL</td>
</tr>
<tr>
<td></td>
<td>• ALL: all mount points are available for this user</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• SEL: Only a selection of mount points is available for this user.</td>
<td></td>
</tr>
<tr>
<td>d6</td>
<td>Number of mount points.</td>
<td>0-10</td>
</tr>
<tr>
<td>s7..s16</td>
<td>Mount point name</td>
<td>100 char. max.</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>00-FF</td>
</tr>
</tbody>
</table>

Example

Querying the list of users

```
$PASHQ,CST,USR
$PASHR,CST,USR,5,0,user1,password1,SEL,2,NAN1,NAN2
$PASHR,CST,USR,5,1,user2,password2,ALL
$PASHR,CST,USR,5,2,user3,password3,SEL,1,NAN1
$PASHR,CST,USR,5,3,user4,password4,SEL,3,NAN1,NAN2,NAN3
$PASHR,CST,USR,5,4,user5,password5,SEL,1,NAN3
```

See also

- $PASHS,CST
- $PASHS,CST,USR,ADD
- $PASHS,CST,USR,DEL

DDM: Differential Decoder Message

Function

This command returns a report about the decoded differential messages.

The report may refer to several types of differential messages which the built-in Differential Decoder gets from different receiver ports.

Command Format

```
$PASHQ,DDM[*cc]
```

Parameters

None.
Response Format

Syntax

$PASHR,DDM,c1,s2,s3,d4,s5,f6,f7,s8*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>Port receiving corrections (may be empty, see below)</td>
<td>A-D, F, I, P, Q</td>
</tr>
<tr>
<td>s2</td>
<td>Message transport</td>
<td>RT2, RT3, CMR, CMX or ATM</td>
</tr>
<tr>
<td>s3</td>
<td>Message number/identifier</td>
<td>e.g. 1004 for RT3, RNX for ATM, etc.</td>
</tr>
<tr>
<td>d4</td>
<td>Counter of decoded messages</td>
<td>0-9999</td>
</tr>
<tr>
<td>s5</td>
<td>Base ID (empty if Base ID not available)</td>
<td></td>
</tr>
<tr>
<td>f6</td>
<td>Time tag, in seconds, as read from the decoded message</td>
<td></td>
</tr>
<tr>
<td>f7</td>
<td>Age of corrections, in seconds</td>
<td></td>
</tr>
<tr>
<td>s8</td>
<td>Attribute</td>
<td>60 characters max.</td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Comments

- Parameter d4 counts the number of decoded messages modulo 10000. It is incremented by one each time a new message is decoded.
 Each receiver port has its own counter. All counters are initialized to 0 after the $PASHS,RST or $PASHS,INI command has been issued. Counters are very useful to check if some DDM messages are lost at the output.

- The f5 field may be empty if the base ID is not available for a given message.

- Parameter f6 is the time tag, in seconds, as read from the decoded message (independently of what $PASHS,PGS is requesting). Regardless of its original presentation, the time tag provided in the DDM message is always expressed in GPS time, within the GPS week.
 For example the time tag from message RTCM-3 MT 1012 (referring to GLONASS time) will be transformed to a GPS time tag in the DDM message.
 Another example is the time tag from message RTCM-2 MT 18. It is originally presented modulo 3600 seconds, but appears as a complete time tag in the DDM message.
 If the decoded message does not contain any time tag (e.g. RT3 1005), the f6 field is empty.
• The age of corrections is defined as the difference, in seconds, between the receiver time at the end of the decoding process and the time tag read from the decoded message. If no tag time is provided in the message (e.g. RT3 1005), the f7 field is empty.
• Parameter s8 holds some vital attributes from the decoded message. It contains a number of parameters delimited by “slash” characters (/). It may also be empty.
• Although controlled by the $PASHS,NME,DDM command, the DDM message is independent of the NMEA period. It is output every time a new differential message is decoded.
• CMR stands for both CMR and CMR+. CMX stands for both CMRx and sCMRx.

Example
$PASHQ,DDM
$PASHR,DDM,D,RT3,1004,5,4095,1,*49

Related Commands
$PASHS,NME

DDN: DynDNS Parameters

Function
This command is used to query the receiver for the current DynDNS settings.

Command Format
Syntax
$PASHQ,DDN[*cc]

Response Format
Syntax
$PASHR,DDN,DYN=d1,SYS=s2,USR=s3,PWD=s4,HNM=s5,PER=d6*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>DYN=d1</td>
<td>Current DynDNS service status: • d1=0: Enabled • d1=1: Disabled</td>
<td>0, 1</td>
</tr>
<tr>
<td>SYS=s2</td>
<td>Address of the free service used.</td>
<td>100 characters max.</td>
</tr>
<tr>
<td>USR=s3</td>
<td>Username chosen when creating an account on the DynDNS web site.</td>
<td>32 characters max.</td>
</tr>
<tr>
<td>PWD=s4</td>
<td>Password chosen when creating an account on the DynDNS web site.</td>
<td>32 characters max.</td>
</tr>
</tbody>
</table>
Query Command Library

Example

$PASHQ,DDN
$PASHR,DDN,DYN=1,SYS=dyndns@dyndns.org,USR=psmith,PWD=ashtec
h,HNM=ashtech1.dyndns.org,PER=600*62

See also $PASHS,DDN,PAR

DDS: Differential Decoder Status

Function
This command allows you to output a message providing status data on the corrections received.

Command Format Syntax
$PASHQ,DDS[*cc]

Response Format Syntax
$PASHR,DDS,d1,m2,d3,c4,d5,d6,d7,d8,d9,d10,d11,f12,f13,d14,n(d15,
f16,f17)*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Differential decoder number. “1” corresponds to first decoder, etc. An empty field means the decoder used is not known.</td>
<td>1-3</td>
</tr>
<tr>
<td>m2</td>
<td>GNSS (output) time tag</td>
<td>0000000.00-235959.99</td>
</tr>
<tr>
<td>d3</td>
<td>Number of decoded messages since last stream change (see table below)</td>
<td>0-127</td>
</tr>
<tr>
<td>c4</td>
<td>ID of port from which corrections are received (may be empty, see below)</td>
<td>A-D, F, I, P, Q</td>
</tr>
<tr>
<td>s5</td>
<td>Protocol detected (empty means “no data”)</td>
<td>RT2, RT3, CMR, ATM, CMX</td>
</tr>
<tr>
<td>d6</td>
<td>Time window, in seconds: • “0” if not defined or just initialized • “200” means equal to or greater than 200</td>
<td>0-200</td>
</tr>
</tbody>
</table>
Query Command Library

CMR stands for both CMR and CMR+. CMX stands for both CMRx and sCMRx.

Ranges of Counters

<table>
<thead>
<tr>
<th>Reported indicator (d3 field)</th>
<th>Counter Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-23</td>
<td>0-23</td>
</tr>
<tr>
<td>24-47</td>
<td>24-71</td>
</tr>
<tr>
<td>48-71</td>
<td>72-167</td>
</tr>
<tr>
<td>72-95</td>
<td>168-359</td>
</tr>
<tr>
<td>96-119</td>
<td>360-743</td>
</tr>
<tr>
<td>120-126</td>
<td>744-1636</td>
</tr>
<tr>
<td>127</td>
<td>1636 or greater</td>
</tr>
</tbody>
</table>

Example

```plaintext
$PASHQ,DDS
$PASHR,DDS,1,140235,33,A,RT3,200,100,0,100,5,50,1,05,1,00,3,1004,1,00
0,0,500,1005,30,00,0,18,000,1006,30,00,0,18,000,*49
```

Related Commands

$PASHS,NME
DFC: Reading the Content of the Default Configuration File

Function
This command allows you to read the content of the default configuration file (`default_config.cmd`).

Command Format Syntax
```plaintext
$PASHQ,DFC[*cc]
```

Response Format Syntax
See the two examples below.

If a default configuration file exists:
```plaintext
$PASHQ,DFC
$PASHR,DFC,BEGIN*5E
# Default configuration for my company – Created on June 27, 2016
$PASHS,ELM,10
$PASHS,NME,GGA,A,ON,1
$PASHS,NME,GSV,A,ON,5
$PASHR,DFC,END*56
```

If there is no default configuration file:
```plaintext
$PASHQ,DFC
$PASHR,DFC,BEGIN*5E
$PASHR,DFC,END*56
```

See Also
- `$PASHS,RST`
- `$PASHS,INI`
- `$PASHS,DFC,DEL`
- `$PASHQ,DFC`
- `$PASHS,DFC,GET`
- `$PASHS,DFC,TST`

DIF,BDS: BeiDou Correcting Data

Function
This command allows you to know whether BeiDou correcting data are used in the receiver or not.

Command Format Syntax
```plaintext
$PASHQ,DIF,BDS[*cc]
```
Response Format Syntax

$PASHR,DIF,BDS,s1*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Status:</td>
<td>OFF, AUT</td>
</tr>
<tr>
<td></td>
<td>• OFF: Not used in position computation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• AUT: Used in position computation, but only in China.</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td></td>
</tr>
</tbody>
</table>

Example

$PASHQ,DIF,BDS
$PASHR,DIF,BDS,AUT*2A

DIF,NET: Source of Correction Data Currently Used

Function

This command tells which incoming correction data are currently used in an RTK rover when several data sources exist.

Command Format Syntax

$PASHQ,DIF,NET[*cc]

Response Format Syntax

$PASHR,DIF,NET,s1*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Corrections currently used:</td>
<td>IP, UHF</td>
</tr>
<tr>
<td></td>
<td>• IP: Are those delivered through an IP connection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• UHF: Are those delivered through a UHF radio link</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td></td>
</tr>
</tbody>
</table>

Example

$PASHQ,DIF,NET
$PASHR,DIF,NET,IP*79
Query Command Library

DIF,SBA: Source of SBAS Corrections

Function
This command allows you to know which source of SBAS corrections is currently used to calculate the position.

Command Format

Syntax
`$PASHQ,DIF,SBA[*cc]`

Response Format

Syntax
`$PASHR,DIF,SBA,d1,d2,s3,s4,n(d5,c6,c7)*cc`

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
</table>
| d1 | Source of SBAS corrections:
 • ALL: from all possible sources
 • OFF: All SBAS corrections rejected from position processing | 1-99 |
| d2 | Message number | 1-d1 |
| s3 | SBAS provider name:
 • WAA: WAAS
 • EGN: EGNOS
 • MSA: MSAS
 • GAG: GAGAN
 • SDC: SDCM (Luch)
 • UKN: Unknown. The unknown provider message is always the last one, with the corresponding s4 field always set to "ON". The provider can be reported unknown in transient cases when a PRN (in the range 120-193) is detected but cannot be assigned to a known provider yet. | WAA, EGN, MSA, GAG, SDC, QZS, UKN |
| s4 | SBAS provider status:
 • ON: Enabled to be used as a source of differential data
 • OFF: Disabled | ON, OFF |
| d5 | SBAS satellite ID. Satellite IDs of a given provider are all reported regardless of its status value (see s4). | 120-193 |
| c6 | Tracking status:
 • T: Tracked
 • -: Not tracked | -, T |
| c7 | Usage status:
 • S: Used
 • -: Not used | -, S |
| *cc | Checksum | |

Example
`$PASHQ,DIF,SBA`
`$PASHR,DIF,SBA,d1,d2,s3,s4,n(d5,c6,c7)*cc`
DIP: Direct IP Parameters

Function
This command is used to query the parameters used for a Direct IP connection. When c6 is omitted in the query command, the returned Direct IP settings are those for the port defined through the $PASHS,DIP,PAR or $PASHS,DIP command last run.

Command Format Syntax
$PASHQ,DIP[","c6"]*["cc"]

Response Format Syntax
$PASHR,DIP,RIP,s1,PRT,d2,LGN,s3,PWD,s4,IPP,c6,STS,d7,ACN,d8*["cc"]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIP,s1</td>
<td>IP address (xxx.xxx.xxx.xxx) or host name</td>
<td>32 char. max.</td>
</tr>
<tr>
<td>PRT,d2</td>
<td>Port number</td>
<td>0-65535</td>
</tr>
<tr>
<td>LGN,s3</td>
<td>User name (optional)</td>
<td>32 char. max.</td>
</tr>
<tr>
<td>PWD,s4</td>
<td>Password (optional)</td>
<td>32 chars max.</td>
</tr>
<tr>
<td>IPP,c6</td>
<td>Internet port used on the receiver to establish the connection with the base (server):</td>
<td>P, Q</td>
</tr>
<tr>
<td>STS,d7</td>
<td>Status:</td>
<td>0, 1</td>
</tr>
<tr>
<td>ACN,d8</td>
<td>Auto-connection:</td>
<td>0, 1</td>
</tr>
</tbody>
</table>

Examples
$PASHQ,DIP
$PASHR,DIP,RIP,www.trimble.com,PRT,8080,IPP,Q,STS,0,ACN,0*4B
DRD: Data Recording Duration

Function
This command returns the duration that was last set for all the G-files that the receiver will be recording.

Command Format

Syntax

```
$PASHQ,DRD[^cc]
```

Parameters
None.

Response Format

Syntax

```
$PASHR,DRD,d1[^cc]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Duration of data recording held in one G-file, in seconds</td>
<td>15-1440</td>
</tr>
<tr>
<td>^cc</td>
<td>Checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Example

```
$PASHQ,DRD
$PASHR,DRD,60[^0C]
```

Relevant Set Command

```
$PASHS,DRD
```

DRI: Raw Data Recording Rate

Function
This command returns the current value of recording rate for raw data.
The output rate of ATOM RNX and PVT messages are returned:
- On port M if the internal memory is selected
- On port S or U if the USB memory is selected

Command Format

Syntax

```
$PASHQ,DRI[^cc]
```

See also $PASHS,DIP,PAR (set command)
Response Format

Syntax

$PASHR,DRI,f1*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>f1</td>
<td>Current raw data recording rate</td>
<td>0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1-6, 10, 12, 15, 20, 30, 60, 120, 180, 240, 300, 360, 600, 720, 900, 1200, 1800, 3600 seconds</td>
</tr>
</tbody>
</table>

Example

$PASHQ,DRI

$PASHR,DRI,1.00*18

Related Commands

$PASHS,DRI (set command)

$PASHQ,REC

$PASHS,MEM

DSY: Daisy Chain Status

Function

This command queries the receiver for the status of the daisy chain function.

Command Format

Syntax

$PASHQ,DSY[*cc]

Parameters

None.

Response Format

Syntax

$PASHR,DSY,OFF*59

or

$PASHR,DSY,c1,c2*cc
Query Command Library

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>Source port:</td>
<td>A-D, F, I, P, Q</td>
</tr>
<tr>
<td></td>
<td>• A, B, D: Serial port</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• C: USB serial port</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• I, P, Q, F: TCP/IP stream</td>
<td></td>
</tr>
<tr>
<td>c2</td>
<td>Destination port:</td>
<td>A-D, F, I, P, Q</td>
</tr>
<tr>
<td></td>
<td>• A, B, D: Serial port</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• C: USB serial port</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• I, P, Q, F: TCP/IP stream</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>00-FF</td>
</tr>
</tbody>
</table>

Example

Command reporting data on port A forwarded to port C:

$PASHQ,DSY
$PASHR,DSY,A,C*38

Relevant Set Command

$PASHS,DSY

DTM: Datum Reference

Function

This command asks the receiver to output the content of the NMEA DTM message.

Command Format Syntax

$PASHQ,DTM[*cc]

Parameters

None.

Response Format Syntax

$GPDTM,s1,,f2,c3,f4,c5,f6,s7*cc
Query Command Library

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
</table>
| s1 | Local datum code:
• W84: WGS84 used as local datum
• 999: Local datum computed using the parameters provided by the RTCM3.1 data stream. | W84, 999 |
| c2 | Latitude offset, in meters | 0-59.999999 |
| c3 | Direction of latitude | N, S |
| c4 | Longitude offset, in meters | 0-59.999999 |
| c5 | Direction of longitude | E, W |
| c6 | Altitude offset, in meters | ±0-99.999 |
| s7 | Reference datum code | W84 |
| *cc | Checksum | *00-*FF |

Example

$PASHQ,DTM$

$GPDTM,999,2.324525,N,1.499476,W,1.365,W84*37$

See Also

$PASHS,NME$

Automatic Output of DTM Messages

This is a reminder on how to output DTM messages at regular intervals of time: Use the $PASHS,NME command with the syntax below:

$PASHS,NME,DTM,<port_ID>,ON,<Rate>$

For more details on the $PASHS,NME command, refer to the Set Command Library Chapter.

As an example, the command below will output DTM messages on port A at a rate of 2 seconds:

$PASHS,NME,DTM,A,ON,2$

DTH: Dithering Mode Status

Function

This command is used to read the dithering mode status.

Command Format

Syntax

$PASHQ,DTH[*cc]$
Response Format Syntax
$PASHQ,DTH,d1*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Dithering mode currently enabled:</td>
<td>0-3</td>
</tr>
<tr>
<td></td>
<td>• 0: Up to RTK fixed (the most accurate)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1: 7 cm horizontal and 7 cm vertical</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2: 7 cm horizontal and 2 cm vertical</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 3: 30 cm horizontal and 30 cm vertical</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td></td>
</tr>
</tbody>
</table>

Example
$PASHQ,DTH
$PASHR,DTH,2*18

DYN: Receiver Dynamics

Function
This command allows you to query the current setting for the receiver dynamics.

Command Format Syntax
$PASHQ,DYN[*cc]

Response Format Syntax
$PASHR,DYN,d*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>Receiver dynamics:</td>
<td>1-9</td>
</tr>
<tr>
<td></td>
<td>• 1: Static</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2: Quasi-static</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 3: Walking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 4: Ship</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 5: Automobile</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 6: Aircraft</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 7: Unlimited</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 8: Adaptive</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 9: User-defined</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>00-FF</td>
</tr>
</tbody>
</table>

Example
$PASHQ,DYN
$PASHR,DYN,8*33
Related Commands

$PASHS,DYN (set command)
$PASHS,UDP

ELM: Elevation Mask

Function
This command is used to read the current value of the elevation mask. The elevation mask impacts data recording, data output and satellite reception at the base. The same value of elevation mask is used for all sensors on the board.

Command Format Syntax

$PASHQ,ELM[*cc]

Response Format Syntax

$PASHR,ELM,d1*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Current value of elevation mask, in degrees</td>
<td>0-90</td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Example
$PASHQ,ELM
$PASHR,ELM,5*29

Related Commands
$PASHS,ELM
$PASHQ,PEM

ETD: Reading Ethernet Driver Parameters

Function
This command queries the board for its current values of Ethernet driver parameters.

Command Format Syntax

$PASHQ,ETD[*cc]
Response Format

Syntax

$PASHR,ETD,AUT=s1,DPL=s2,SPD=d3*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUT=s1</td>
<td>Auto-negotiation enabled (ON) or disabled (OFF)</td>
<td>ON, OFF</td>
</tr>
<tr>
<td>DPL=s2</td>
<td>Duplex mode (full or half) (if s1=OFF)</td>
<td>FULL, HALF</td>
</tr>
<tr>
<td>SPD=d3</td>
<td>Speed in Mbits/s (if s1=OFF)</td>
<td>10, 100</td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Example

$PASHQ,ETD

$PASHR,ETD,AUT=OFF,DPL=FULL,SPD=100*02

Related Commands

$PASHS,ETD,PAR

$PASHS,ETH,ON

$PASHS,ETH,OFF

ETH: Ethernet Status and Parameters

Function

This command is used to read the current status of the Ethernet port as well as all the parameters relevant to this port.

Command Format

Syntax

$PASHQ,ETH[^cc]

Response Format

Syntax

$PASHR,ETH,c1,s2,s3,s4,DHP=d5,ADD=s6,MSK=s7,GTW=s8,DN1=s9,DN2 =s10,ACN=d11*cc
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>Ethernet port (TCP/IP server)</td>
<td>I</td>
</tr>
<tr>
<td>s2</td>
<td>Ethernet status</td>
<td>OFF, ON</td>
</tr>
<tr>
<td>s3</td>
<td>MAC address (xx:xx:xx:xx:xx:xx)</td>
<td>17 characters</td>
</tr>
<tr>
<td>s4</td>
<td>Current IP address (=s6 when DHCP disabled)</td>
<td>0.0.0.0-255.255.255.255</td>
</tr>
<tr>
<td>DHP=s5</td>
<td>DHCP mode (0: disabled; 1: enabled)</td>
<td>0, 1</td>
</tr>
<tr>
<td>ADD=s6</td>
<td>Static IP address assigned to the receiver when DHCP is disabled</td>
<td>0.0.0.0-255.255.255.255</td>
</tr>
<tr>
<td>MSK=s7</td>
<td>Sub-network mask</td>
<td>0.0.0.0-255.255.255.255</td>
</tr>
<tr>
<td>GTW=s8</td>
<td>Gateway IP address</td>
<td>0.0.0.0-255.255.255.255</td>
</tr>
<tr>
<td>DN1=s9</td>
<td>DNS 1 IP address</td>
<td>0.0.0.0-255.255.255.255</td>
</tr>
<tr>
<td>DN2=s10</td>
<td>DNS 2 IP address</td>
<td>0.0.0.0-255.255.255.255</td>
</tr>
<tr>
<td>ACN=d11</td>
<td>(Obsolete)</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Parameters s6, s7, s8, s9, s10 are the Ethernet parameters used when the DHCP mode is disabled. In that case, s4=s6.

Example

$PASHQ,ETH
$PASHR,ETH,1,ON,02:03:04:85:06:07,10.20.2.74,DHP=1,ADD=10.20.2.28,MSK=255.255.255.0,GTW=10.20.2.1,DN1=134.20.2.16,DN2=134.20.2.3,ACN=1*1B

See also

$PASHS,ETH,PAR
$PASHS,ETH

FIL,CUR: Information On G-File Being Recorded

Function

This command allows you to read information about the G-file currently being recorded.

Command Format Syntax

$PASHQ,FIL,CUR[*cc]

Response Format Syntax

General form:

$PASHR,FIL,CUR,s1,d2,s3,s4,d5*cc

If no G-file recording is in progress:

$PASHR,FIL,CUR,NONE*79

362
FIL,LST: Listing Files in Receiver Memory or USB Key

Function
This command allows you to list the names of the files stored in the receiver's internal memory or on the USB key connected to the receiver.

Command Format
Syntax
$PASHQ,FIL,LST,d1[,s2]["cc]

Parameters
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Memory type:</td>
<td>0, 2, 3</td>
</tr>
<tr>
<td></td>
<td>• 0: Internal memory (user data partition)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2: USB memory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 3: Internal memory (log file partition)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• d1 omitted: Memory is as defined with $PASHS,MEM</td>
<td></td>
</tr>
</tbody>
</table>

Response format
Syntax
$PASHR,FIL,LST,d1,d2,s3,d4,s5,s6[,c7]["cc]
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Number of files</td>
<td></td>
</tr>
<tr>
<td>d2</td>
<td>File index</td>
<td></td>
</tr>
<tr>
<td>s3</td>
<td>File name or directory name</td>
<td>255 characters max.</td>
</tr>
<tr>
<td>d4</td>
<td>Size in bytes</td>
<td>0-134217728</td>
</tr>
<tr>
<td>s5</td>
<td>Date (ddmmyyyy)</td>
<td></td>
</tr>
<tr>
<td>s6</td>
<td>Time (himmss)</td>
<td>000000-235959</td>
</tr>
<tr>
<td>c7</td>
<td>=D when s3 is a directory name</td>
<td>D</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Example

$PASHQ,FIL,STS*53
$PASHR,FIL,LST,4,0,GazerA14.123,1769897,14032014,130850*74
$PASHR,FIL,LST,4,1,GazerB14.123,1769876,10032014,110952*7C
$PASHR,FIL,LST,4,2,GazerC14.123,1769787,01032014,181856*72
$PASHR,FIL,LST,4,3,GazerD14.123,1769787,01032014,181856*74

Related Commands

$PASHS,REC
$PASHS,MEM
$PASHQ,FIL,STS

FIL,STS: Memory Status

Function
This command is used to read the current status of the receiver memory (SD card or internal memory).

Command Format Syntax

$PASHQ,FIL,STS[d1]*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
</table>
| d1 | Queried memory:
| 0: Internal memory (user data partition)
| 2: USB memory
| 3: Internal memory (log file partition) | 0, 2, 3 |
| *cc | Optional checksum | *00-*FF |

Response Format Syntax

$PASHR,FIL,STS,d1,d2,d3*cc

364
FTP: FTP Status and Settings

Function
This command is used to query the status and settings of the FTP server used to upload files from the receiver.

Command Format
Syntax
$PASHQ,FTP[*cc]

Parameters
None.

Response Format
Syntax
$PASHR,FTP,s1,d2,d3,s4,d5,d6,ADD=s7,PRT=d8,LGN=s9,PWD=s10,PTH=s11*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>File transfer status:</td>
<td>NONE, PUT</td>
</tr>
<tr>
<td></td>
<td>• NONE: no transfer to FTP</td>
<td>NONE, PUT</td>
</tr>
<tr>
<td></td>
<td>• PUT: File being uploaded to FTP</td>
<td></td>
</tr>
<tr>
<td>d2</td>
<td>Number of files to be transferred</td>
<td>0-255</td>
</tr>
<tr>
<td>d3</td>
<td>Number of files already transferred</td>
<td>0-255</td>
</tr>
<tr>
<td>s4</td>
<td>Name of the file being transferred</td>
<td>255 characters max.</td>
</tr>
</tbody>
</table>

Related Commands
$PASHS,REC
$PASHS,MEM
$PASHQ,FIL,LST

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Queried memory:</td>
<td>0, 2, 3</td>
</tr>
<tr>
<td></td>
<td>• 0: Internal memory (user data partition)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2: USB memory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 3: Internal memory (log file partition)</td>
<td></td>
</tr>
<tr>
<td>d2</td>
<td>Total memory size, in bytes.</td>
<td>0 if memory not available</td>
</tr>
<tr>
<td>d3</td>
<td>Free memory size, in bytes.</td>
<td>0 if memory not available</td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>*00-FF</td>
</tr>
</tbody>
</table>
Query Command Library

Example

```plaintext
$PASHQ,FTP*35
$PASHR,FTP,PUT,10,3,GabcdA9.145,1769897,56,ADD=ftp.ashtech.com,
PRT=21,LGN=Ashtech,PWD=u6huz8,PTH=/my folder*11
```

See Also

- $PASHS,FTP,PAR
- $PASHS,FTP,PUT

GAL: GALILEO Tracking Status

Function

This command queries the receiver for the current GALILEO tracking status.

Command Format

Syntax

```plaintext
$PASHQ,GAL[*cc]
```

Response Format

Syntax

```plaintext
$PASHR,GAL,s1,USE,n(c2)*cc
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
</table>
| s1 | Galileo tracking status:
• ON: Currently tracking and using Galileo satellites
• OFF: Not tracking Galileo satellites
This status is provided n times, where n is the number of satellites in the Galileo constellation.
See also the $PASHS,<GNS>,USE command. | ON, OFF |
| n(c2) | Provides tracking status of each Galileo satellite:
• Y: Tracking enabled for this satellite
• N: Tracking disabled for this satellite
This status is provided n times, where n is the number of satellites in the Galileo constellation.
See also the $PASHS,<GNS>,USE command. | Y, N |
| *cc | Checksum | *00-*FF |

366
Example

$PASHQ,GAL
$PASHR,GAL,ON,USE,YYYYYYYYYYYYYYYYYYYYYYYYYYYYY*50

Related Commands

$PASHS,GAL (set command)

GBS: GNSS Satellite Fault Detection

Function

This command returns the GBS message supporting RAIM (Receiver Autonomous Integrity Monitoring) on the port routing the query command if no output port is specified.

Command Format Syntax

$PASHQ,GBS[*cc]

Parameters

None.

Response Format

The message header is in the form:

$--GBS

If only GPS satellites are used in the position solution, the message header is:

$GPGBS

If only GLONASS satellites are used in the position solution, the message header is:

$GLGBS

If only BeiDou satellites are used in the position solution, the message header is:

$GBGBS

If several types of satellites are used in the position solution, the message header is:

$GNGBS

Syntax

$--GBS,m1,f2,f3,f4,d5,f6,f7,f8,h9,h10*cc
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>m1</td>
<td>UTC time of the GGA or GNS fix associated with this message (hh:mm:ss)</td>
<td>000000.00-235959.99</td>
</tr>
<tr>
<td>f2</td>
<td>Expected error in latitude, in meters, due to bias, with noise= 0</td>
<td>0.0-99.9</td>
</tr>
<tr>
<td>f3</td>
<td>Expected error in longitude, in meters, due to bias, with noise= 0</td>
<td>0.0-99.9</td>
</tr>
<tr>
<td>f4</td>
<td>Expected error in altitude, in meters, due to bias, with noise= 0</td>
<td>0.0-99.9</td>
</tr>
<tr>
<td>d5</td>
<td>ID number of most likely failed satellite</td>
<td>See table below</td>
</tr>
<tr>
<td>f6</td>
<td>Probability of missed detection for most likely failed satellite</td>
<td>0.00-1.00</td>
</tr>
<tr>
<td>f7</td>
<td>Estimate of bias, in meters, on most likely failed satellite</td>
<td>0.0-99.9</td>
</tr>
<tr>
<td>f8</td>
<td>Standard deviation of bias estimate</td>
<td>0.0-99.9</td>
</tr>
<tr>
<td>h9</td>
<td>GNSS system ID</td>
<td>0-F; See table below</td>
</tr>
<tr>
<td>h10</td>
<td>GNSS signal ID</td>
<td>0-F; See table below</td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

GNSS System and Signal Table

<table>
<thead>
<tr>
<th>System</th>
<th>System ID</th>
<th>Satellite ID</th>
<th>Signal ID</th>
<th>Signal Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS</td>
<td>1 (GP)</td>
<td>1-99</td>
<td>All signals L1, C/A L1 P(Y), L1 M, L2 P(Y) L2C-M, L2C-L, L5-I, L5-Q</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-32 reserved for GPS, 33-64 reserved for SBAS (65-99 undefined)</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>GLONASS</td>
<td>2 (GL)</td>
<td>33-99</td>
<td>All signals G1, C/A G1 P, C/A GLONASS (M)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33-64 reserved for SBAS, 65-99 reserved for GLONASS</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(65-99 undefined)</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>GALILEO</td>
<td>3 (GA)</td>
<td>1-99</td>
<td>All signals E5a, E5b, E5 a+b E6-A, E6-BC L1-A, L1-BC</td>
<td>5/8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-36 reserved for Galileo, 37-64 reserved for Galileo SBAS (65-99 undefined)</td>
<td>5</td>
<td>8/8</td>
</tr>
</tbody>
</table>
Automatic Output of GBS Messages

This is a reminder on how to output GBS messages at regular intervals of time: Use the \$PASHS,NME command with the syntax below:

\$PASHS,NME,GBS,<port_ID>,ON,<Rate>

For more details on the \$PASHS,NME command, refer to the Set Command Library Chapter.

As an example, the command below will output GBS messages on port A at a rate of 120 seconds:

\$PASHS,NME,GBS,A,ON,120

GEM: Geoid Model

Function

This command is used to read the name of the geoid model currently used.

Command Format

Syntax

\$PASHQ,GEM[*cc]
Query Command Library

Response Format

Syntax

$PASHR,GEM,s1*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Geoid model currently used:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• STANAG: STANAG 4294 geoid model</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• EGM96: EGM 96 geoid model</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Example

$PASHQ,GEM
$PASHR,GEM,STANAG*1A

Related Commands

$PASHS,GEM (set command)

GGA: GNSS Position Message

Function

This command is used to output a GGA message containing the last computed position. If no position is computed, the message will be output anyway, but with some blank fields.

Command Format

Syntax

$PASHQ,GGA[*cc]

Response Format

Syntax

$GPGGA,m1,m2,c3,m4,d6,d7,i8,i9,i10,i11,d12*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>m1</td>
<td>Current UTC time of position (hhmmss.ss)</td>
<td>000000.00-235959.99</td>
</tr>
<tr>
<td>m2</td>
<td>Latitude of position (ddmm.mmmmmm)</td>
<td>0-89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0-59.999999</td>
</tr>
<tr>
<td>c3</td>
<td>Direction of latitude</td>
<td>N, S</td>
</tr>
<tr>
<td>m4</td>
<td>Longitude of position (dddmm.mmmmmm)</td>
<td>0-180</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0-59.999999</td>
</tr>
<tr>
<td>c5</td>
<td>Direction of longitude</td>
<td>E, W</td>
</tr>
</tbody>
</table>
Example

$PASHQ,GGA
$GPQGA,131745.00,4717.960847,N,00130.499476,W,4,10,0.8,35.655,M,47.290,M,3.0,1000*61

Related Commands

$PASHS,NME

$PASHS,NPT

Automatic Output of GGA Messages

This is a reminder on how to output GGA messages at regular intervals of time: Use the $PASHS,NME command with the syntax below:

$PASHS,NME,GGA,<port_ID>,ON,<Rate>

For more details on the $PASHS,NME command, refer to the Set Command Library Chapter.

As an example, the command below will output GGA messages on port A at a rate of 0.5 second:

$PASHS,NME,GGA,A,ON,0.5

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d6</td>
<td>Position type:</td>
<td>0-5, 9</td>
</tr>
<tr>
<td></td>
<td>• 0: Position not available or invalid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1: Autonomous position</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2: RTCM Differential (or SBAS Differential)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 3: Not used</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 4: RTK fixed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 5: RTK float</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 9: SBAS Differential.</td>
<td></td>
</tr>
<tr>
<td>d7</td>
<td>Number of GNSS Satellites being used in the position computation</td>
<td>3-26</td>
</tr>
<tr>
<td>f5</td>
<td>HDOP</td>
<td>0-99.9</td>
</tr>
<tr>
<td>f9,M</td>
<td>Altitude, in meters, above mean seal level.</td>
<td>± 99999.999,M</td>
</tr>
<tr>
<td>f10,M</td>
<td>Geoidal separation in meters.</td>
<td>± 999.999,M</td>
</tr>
<tr>
<td>f11</td>
<td>Age of differential corrections, in seconds</td>
<td>0-999</td>
</tr>
<tr>
<td>d12</td>
<td>Base station ID (RTCM only)</td>
<td>0-4095</td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>
GGKx: GNSS Position Message

Function
This command is used to output a GGKx message containing the last computed position. If no position is computed, the message will be output anyway, but with some blank fields.

Command Format
$PASHQ,GGKX[*cc]

Response Format
$PTNL,GGKx,m1,m2,m3,c4,m5,c6,d7,d8,f9,f10,M,d11,f12,f13,f14,f15*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>m1</td>
<td>Current UTC time of position (hhmmss.ss)</td>
<td>000000.00-235959.99</td>
</tr>
<tr>
<td>m2</td>
<td>UTC date of position (mmddyy)</td>
<td>010101-123199</td>
</tr>
<tr>
<td>m3</td>
<td>Latitude of position (ddmm.mmmmmm)</td>
<td>-90-0, 0-59.999999</td>
</tr>
<tr>
<td>c4</td>
<td>Direction of latitude</td>
<td>N, S</td>
</tr>
<tr>
<td>m5</td>
<td>Longitude of position (dddmm.mmmmmm)</td>
<td>-180-0, 0-59.999999</td>
</tr>
<tr>
<td>c6</td>
<td>Direction of longitude</td>
<td>E, W</td>
</tr>
<tr>
<td>d7</td>
<td>Position type:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 0: Position not available or invalid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1: Autonomous GPS fix</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2: RTK float solution or RTK location status</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 3: RTK fix solution</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 4: Differential, code phase only solution</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 5: SBAS solution</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 6: 3D network solution for RTK float or RTK location</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 7: RTK fixed 3D network solution</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 8: 2D network solution for RTK float or RTK location</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 9: RTK fixed 2D network solution</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 12: RTK location</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 13: Beacon DGPS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 14: RTK Global</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Reminder: The board DOES NOT SUPPORT OMNISTAR.)</td>
<td></td>
</tr>
<tr>
<td>d8</td>
<td>Number of GNSS Satellites being used in the position computation</td>
<td>3-26</td>
</tr>
<tr>
<td>f9</td>
<td>PDOP</td>
<td>0-99.9</td>
</tr>
</tbody>
</table>
Query Command Library

Related Command

$PASHS,NME

Automatic Output of GGKX Messages

This is a reminder on how to output GGKX messages at regular intervals of time: Use the $PASHS,NME command with the syntax below:

$PASHS,NME,GGKX,<port_ID>,ON,<Rate>

For more details on the $PASHS,NME command, refer to the Set Command Library Chapter.

As an example, the command below will output GGKX messages on port A at a rate of 0.5 second:

$PASHS,NME,GGKX,A,ON,0.5

GLB: Choice of Antenna Input for L-Band Reception

Function

This command reads the antenna input currently selected to receive L-band signals.

Command Format Syntax

$PASHQ,GLB[^cc]

Parameters

None.

Response Format Syntax

$PASHR,GLB,c1^cc

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>f10,M</td>
<td>Ellipsoid height of fix (antenna height above ellipsoid. “M” for meters.</td>
<td>± 99999.999,M</td>
</tr>
<tr>
<td>d11</td>
<td>Number of extension fields to follow.</td>
<td></td>
</tr>
<tr>
<td>f12</td>
<td>Sigma East</td>
<td>0.000-999.999</td>
</tr>
<tr>
<td>f13</td>
<td>Sigma North</td>
<td>0.000-999.999</td>
</tr>
<tr>
<td>f14</td>
<td>Sigma Up</td>
<td>0.000-999.999</td>
</tr>
<tr>
<td>f15</td>
<td>Propagation age</td>
<td></td>
</tr>
<tr>
<td>^cc</td>
<td>Checksum</td>
<td>00-FF</td>
</tr>
</tbody>
</table>
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>Antenna chosen for L-band reception:</td>
<td>ON, OFF, A1</td>
</tr>
<tr>
<td></td>
<td>• ON or A1: Antenna input #1 is used for L-band signal reception.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• OFF: No L-band signal reception.</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>00-FF</td>
</tr>
</tbody>
</table>

Example

$PASHQ,GLB
$PASHR,GLB,OFF*SE

GLL: Geographic Position - Latitude/Longitude

Function
This command is used to output a GLL message containing the last computed position. The message is output on the port on which the query is made. If no position is computed, the message will be output anyway, but all position-related fields will be blank.

Command Format

Syntax
$PASHQ,GLL[*cc]

Response Format

Syntax
$GPGLL,m1,c2,m3,c4,m5,c6,c7*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>m1</td>
<td>Latitude of position (ddmm.mmmmmmm)</td>
<td>0-90 0-59.999999</td>
</tr>
<tr>
<td>c2</td>
<td>Direction of latitude</td>
<td>N, S</td>
</tr>
<tr>
<td>m3</td>
<td>Longitude of position (dddmm.mmmmmmm)</td>
<td>0-180 0-59.999999</td>
</tr>
<tr>
<td>c4</td>
<td>Direction of longitude</td>
<td>E, W</td>
</tr>
<tr>
<td>m5</td>
<td>Current UTC time of position (hhmmss.ss)</td>
<td>000000.00-235959.99</td>
</tr>
<tr>
<td>c6</td>
<td>Status</td>
<td>A, V</td>
</tr>
<tr>
<td></td>
<td>• A: Data valid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• V: Data not valid</td>
<td></td>
</tr>
</tbody>
</table>
Example

$PASHQ,GLL
$GPGLL,4717.960853,N,00130.499473,W,132331.00,A,D*7D

Related Commands

$PASHS,NME

Automatic Output of GLL Messages

This is a reminder on how to output GLL messages at regular intervals of time: Use the $PASHS,NME command with the syntax below:

$PASHS,NME,GLL,<port_ID>,ON,<Rate>

For more details on the $PASHS,NME command, refer to the Set Command Library Chapter.

As an example, the command below will output GLL messages on port A at a rate of 0.5 second:

$PASHS,NME,GLL,A,ON,0.5

GLO: GLONASS Tracking Status

Function

This command is used to query the GLONASS tracking status.

Command Format Syntax

$PASHQ,GLO[^cc]

Response Format Syntax

$PASHR,GLO,s1,USE,n(c2)*cc

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>c7</td>
<td>Mode indicator:</td>
<td>A, D, N</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>^00-*FF</td>
</tr>
</tbody>
</table>
Query Command Library

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
</table>
| s1 | GLONASS tracking status:
• ON: Currently tracking and using GLONASS satellites
• OFF: Not tracking GLONASS satellites | ON, OFF |
| n(c2) | Provides tracking status of each GLONASS satellite:
• Y: Tracking enabled for this satellite
• N: Tracking disabled for this satellite | Y, N |
| *cc | Checksum | *00-*FF |

Example

$PASHQ,GLO
$PASHR,GLO,ON,USE,YYYYYYYYYYYYYYYYYYYYYYYYY*SE

Related Commands

$PASHS,GLO (set command)

GLx: Checking Which GNSS Signals are Tracked

Function

This command is used to see which GNSS signals are currently tracked or not tracked on the different frequency bands.

Command Format Syntax

<table>
<thead>
<tr>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>$PASHQ, GL1[*cc]</td>
</tr>
<tr>
<td>$PASHQ, GL2[*cc]</td>
</tr>
</tbody>
</table>

Parameters

None

Response Format Syntax

<table>
<thead>
<tr>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>$PASHR, GL1.s1*cc</td>
</tr>
<tr>
<td>$PASHR, GL2.s2*cc</td>
</tr>
</tbody>
</table>
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>L1 GNSS signals:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ON: Currently tracked</td>
<td>(Forced to ON)</td>
</tr>
<tr>
<td></td>
<td>• OFF: Currently not tracked</td>
<td></td>
</tr>
<tr>
<td>s2</td>
<td>L2 GNSS signals:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ON: Currently tracked</td>
<td>ON, OFF</td>
</tr>
<tr>
<td></td>
<td>• OFF: Currently not tracked</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Example

$PASHQ,GL2
$PASHR,GL2,ON*60

Related Commands

$PASHS,GLx

GMP: GNSS Map Projection Fix Data

Function

This command is used to output a GMP message containing the last computed position. If no position is computed, the message will be output anyway, but with some blank fields.

Command Format

Syntax

$PASHQ,GMP[*cc]

Parameters

None.

Response Format

Syntax

$--GMP,m1,s2,s3,f4,f5,s6,d7,f8,f9,f10,f11,d12*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>--GMP</td>
<td>Header</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$GPGMP: Only GPS satellites are used.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$GLGMP: Only GLONASS satellites are used.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$GNGMP: Several constellations (GPS, SBAS, GLONASS) are used.</td>
<td></td>
</tr>
<tr>
<td>m1</td>
<td>Current UTC time of position (hhmmss.ss)</td>
<td>000000.00-235959.99</td>
</tr>
</tbody>
</table>
Example

$PASHQ,GMP
$GP,GMP:131745.00,LOC,,,,125.221,5.214,1.5,454*xx

Related Commands

$PASHS,NME
Automatic Output of GMP Messages

This is a reminder on how to output GMP messages at regular intervals of time: Use the $PASH,NME,GMP,<port_ID>,ON,<Rate>

For more details on the $PASH,NME command, refer to the Set Command Library Chapter.
As an example, the command below will output GMP messages on port A at a rate of 0.5 second:

$PASH,NME,GMP,A,ON,0.5

GNS: GNSS Fix Data

Function

This command allows you to output the standard NMEA GNS message.
If no computed position is available when you request the message, the message will nonetheless be output, but with all the position-related fields left blank.

Command Format Syntax

$PASHQ,GNS[*cc]

Response Format Syntax

$--GNS,m1,m2,c3,m4,c5,s6,d7,f8,f9,f10,f11,d12*cc

If the receiver is configured in GPS mode only, the message header is $GPGNS. If it’s configured in GLONASS only, the message header is $GLGNS. If it’s configured in BEIDOU only, it’s $GBGNS. With several GNSS constellations used, the message header is $GNGNS.

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>m1</td>
<td>Current UTC time of position (hhmmss.ss)</td>
<td>000000.00-235959.99</td>
</tr>
<tr>
<td>m2</td>
<td>Latitude of position (ddmm.mmmmmmm)</td>
<td>0-90, 0-59.999999</td>
</tr>
<tr>
<td>c3</td>
<td>Direction of latitude</td>
<td>N, S</td>
</tr>
<tr>
<td>m4</td>
<td>Longitude of position (dddmm.mmmmmmm)</td>
<td>0-180, 0-59.999999</td>
</tr>
</tbody>
</table>
Query Command Library

Example

$PASHQ,GNS
$GNGNS,131745.00,4717.960847,N,00130.499476,W,RR,10,0.8,35.655,47.290,3.0,1000*61

Related Commands

$PASHS,NME

Automatic Output of GNS Messages

This is a reminder on how to output GNS messages at regular intervals of time: Use the $PASHS,NME command with the syntax below:

$PASHS,NME,GNS,<port_ID>,ON,<Rate>

For more details on the $PASHS,NME command, refer to the Set Command Library Chapter.
As an example, the command below will output GNS messages on port A at a rate of 10 seconds:

$PASHS,NME,GNS,A,ON,10

GPS: GPS Tracking Status

Function

This command is used to query the receiver for the GPS tracking status.
GRS: GNSS Range Residuals

Function
This command is used to output a GRS message containing the satellite range residuals. The message is output on the port on which the query is made. No message will be output until a position is computed.

Command Format

Syntax

$PASHQ,GRS[*cc]

Response Format

Syntax

$PASHR,GRS,m1,d2,n(f3)*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>GPS tracking status:</td>
<td>ON, OFF</td>
</tr>
<tr>
<td></td>
<td>• ON: Currently tracking and using GPS satellites</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• OFF: Not tracking GPS satellites</td>
<td></td>
</tr>
<tr>
<td>n(c2)</td>
<td>Provides tracking status of each GPS satellite:</td>
<td>Y, N</td>
</tr>
<tr>
<td></td>
<td>• Y: Tracking enabled for this satellite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• N: Tracking disabled for this satellite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>This status is provided n times, where n is the number of satellites in the GPS constellation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See also the $PASHS,<GNS>,USE command.</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>"00-*FF"</td>
</tr>
</tbody>
</table>

Example

$PASHQ,GRS
$PASHR,GRS,ON,USE,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYN*5E

Related Commands
$PASHS,GRS (set command)
Query Command Library

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>$GRS</td>
<td>Header</td>
<td></td>
</tr>
<tr>
<td>m1</td>
<td>Current UTC time of GGA position (hhmmss.ss)</td>
<td>000000.00-235959.99</td>
</tr>
<tr>
<td>d2</td>
<td>Mode used to compute range residuals</td>
<td>Always "1"</td>
</tr>
<tr>
<td>f3</td>
<td>Range residual for satellite used in position computation (repeated "n" times, where n is the number of satellites used in position computation). Residuals are listed in the same order as the satellites in the GSA message so that each residual provided can easily be associated with the right satellite.</td>
<td>±999.999</td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>00-FF</td>
</tr>
</tbody>
</table>

Example

$PASHQ,GRS
$GNGRS,141003.50,1,1.14,-0.48,0.26,0.20,-0.94,-0.28,-1.18*61
$GNGRS,141003.50,1,-0.20*4F

See also

$PASHS,NME

Automatic Output of GRS Messages

This is a reminder on how to output GRS messages at regular intervals of time: Use the $PASHS,NME command with the syntax below:

$PASHS,NME,GRS,<port_ID>,ON,<Rate>

For more details on the $PASHS,NME command, refer to the Set Command Library Chapter.

As an example, the command below will output GRS messages on port A at a rate of 0.5 second:

$PASHS,NME,GRS,A,ON,0.5

GSA: GNSS DOP and Active Satellites

Function

This command is used to output a GSA message containing data related to DOP values and satellites used in the position solution.

382
Command Format

Syntax

$PASHQ,GSA[^cc]

Response Format

Syntax

$--GSA,c1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,f15,f16,f17,d18[^cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>“$--GSA” Header</td>
<td>$GPGSA: Only GPS satellites are used. $GLGSA: Only GLONASS sats are used. $GBGSA: Only BeiDou satellites are used. $GNGSA: Several constellations (GPS, SBAS, GLONASS, BeiDou) are used.</td>
<td>$GPGSA, $GLGSA, $GBGSA, $GNGSA</td>
</tr>
<tr>
<td>c1</td>
<td>Output mode: M: Manual A: Automatic</td>
<td>M, A</td>
</tr>
<tr>
<td>d2</td>
<td>Position indicator: 1: No position available 2: 2D position 3: 3D position</td>
<td>1-3</td>
</tr>
<tr>
<td>d3-d14</td>
<td>Satellites used in the position solution (blank fields for unused channels)</td>
<td>See table below.</td>
</tr>
<tr>
<td>f15</td>
<td>PDOP</td>
<td>0-9.9</td>
</tr>
<tr>
<td>f16</td>
<td>HDOP</td>
<td>0-9.9</td>
</tr>
<tr>
<td>f17</td>
<td>VDOP</td>
<td>0-9.9</td>
</tr>
<tr>
<td>f18</td>
<td>GNSS System ID</td>
<td>1-6; See table below.</td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>'00'-FF</td>
</tr>
</tbody>
</table>

System Summary

<table>
<thead>
<tr>
<th>System</th>
<th>System ID</th>
<th>Satellite ID</th>
<th>Signal ID</th>
<th>Signal Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS</td>
<td>1 (GP)</td>
<td>1-99 1-32 reserved for GPS 33-64 reserved for SBAS (65-99 undefined)</td>
<td>0 1 2 3 4 5 6 7 8 9-F</td>
<td>All signals L1 C/A L1 P(Y) L1 M L2 P(Y) L2C- M L2C-L L5-I L5-Q Reserved</td>
</tr>
<tr>
<td>GLONASS</td>
<td>2 (GL)</td>
<td>33-99 33-64 reserved for SBAS 65-69 reserved for GLONASS</td>
<td>0 1 2 3 4 5-F</td>
<td>All signals G1 C/A G1 P G2 C/A GLONASS (M) G2 P Reserved</td>
</tr>
</tbody>
</table>
Query Command Library

Satellite ID is obtained by taking the 6 Low Significant Digits of the 8-bit PRN Number (e.g. Satellite ID of PRN 193 is 1).

Example

$PASHQ,GSA$
$GNGSA,A,3,20,11,13,23,17,04,31,...,1.6,0.9,1.3,1^*3C$
$GNGSA,A,3,20,83,83,...,1.6,0.9,1.3,2^*32$

Automatic Output of GSA Messages

This is a reminder on how to output GSA messages at regular intervals of time: Use the $PASHS,NME$ command with the syntax below:

$PASHS,NME,GSA,<port_ID>,ON,<Rate>$

For more details on the $PASHS,NME$ command, refer to the Set Command Library Chapter.

As an example, the command below will output GSA messages on port A at a rate of 0.5 second:

<table>
<thead>
<tr>
<th>System</th>
<th>System ID</th>
<th>Satellite ID</th>
<th>Signal ID</th>
<th>Signal Channel</th>
</tr>
</thead>
</table>
| GALILEO | 3 (GA) | 1-99
1-36 reserved for Galileo
37-64 reserved for Galileo SBAS
(65-99 undefined) | 0
All signals E5a
E5b
E5 a+b E5-A
E6-BC L1-A
L1-BC
Reserved | 6
7
8-F |
| IRNSS | 4 (GI) | 1-99
1-15 reserved for IRNSS
(15-32 undefined)
33-64 reserved for SBAS
(65-99 undefined) | 0
All signals
L5-SPS
S-SPS
L5-RS
S-RS
L1-SPS
Reserved | 6-F |
| BEIDOU | 5 (GB) | 1-99
1-40 reserved for SBAS
(41-99 undefined) | 0
All signals
B1I
B2a
B2I
Reserved | 5-F |
| QZSS | 6 (GQ) | 1-99
1-9 reserved for QZSS
55-63 is reserved for QZSS SBAS
(64-99 undefined) | 0
All signals L1
L1 C/A
L1 (D) L1C (P)
L2C-L L5-I
L5-Q
L6D L6E
Reserved | 6-F |

* Satellite ID is obtained by taking the 6 Low Significant Digits of the 8-bit PRN Number (e.g. Satellite ID of PRN 193 is 1).
GST: GNSS Pseudo-Range Error Statistics

Function
This command is used to output a GST message containing standard deviations relevant to the position solution.

Command Format

Syntax
$PASHQ,GST[^cc]

Response Format

Syntax
$--GST,m1,f2,f3,f4,f5,f6,f7,f8[^cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>$--GST$</td>
<td>Header</td>
<td>PGST: Only GPS satellites are used. GLGST: Only GLONASS satellites are used. GNGST: Several constellations (GPS, SBAS, GLONASS, BEIDOU) are used.</td>
</tr>
<tr>
<td>m1</td>
<td>Current UTC time of position (hhmmss.ss)</td>
<td>000000.00-235959.99</td>
</tr>
<tr>
<td>f2</td>
<td>RMS value of standard deviation of range inputs (DGNSS corrections included), in meters</td>
<td>0.000-999.999</td>
</tr>
<tr>
<td>f3</td>
<td>Standard deviation of semi-major axis of error ellipse, in meters</td>
<td>0.000-999.999</td>
</tr>
<tr>
<td>f4</td>
<td>Standard deviation of semi-minor axis of error ellipse, in meters</td>
<td>0.000-999.999</td>
</tr>
<tr>
<td>f5</td>
<td>Orientation of semi-major axis of error ellipse, in degrees from true North</td>
<td>0 to 180</td>
</tr>
<tr>
<td>f6</td>
<td>Standard deviation of latitude error, in meters</td>
<td>0.000-999.999</td>
</tr>
<tr>
<td>f7</td>
<td>Standard deviation of longitude error, in meters</td>
<td>0.000-999.999</td>
</tr>
<tr>
<td>f8</td>
<td>Standard deviation of altitude error, in meters</td>
<td>0.000-999.999</td>
</tr>
</tbody>
</table>

Example

$PASHQ,GST$
$GNGST,154013.80,0.642,1.746,1.303,27.197,1.663,1.407,2.456*79$

See also

$PASHS,NME$
Automatic Output of GST Messages

This is a reminder on how to output GST messages at regular intervals of time: Use the $PASHS,NME command with the syntax below:

$PASHS,NME,GST,<port_ID>,ON,<Rate>

For more details on the $PASHS,NME command, refer to the *Set Command Library* Chapter.

As an example, the command below will output GST messages on port A at a rate of 0.5 second:

$PASHS,NME,GST,A,ON,0.5

GSV: GNSS Satellites in View

Function

This command is used to output a GSV message containing information on the satellites in view.

Command Format

Syntax

$PASHQ,GSV[^cc]

Response Format

Syntax

$--GSV,d1,d2,d3,n(d4,d5,d6,f7),d8[^cc]

The set of parameters (d4,d5,d6,f7) can be repeated up to 4 times in a single response line, corresponding to the description of 4 different satellites. The number of response lines is therefore dependent on the number of satellites in view (e.g. three response lines if between 9 and 12 satellites are visible).
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>$--GSV$</td>
<td>$$GPGSV$: GPS satellites.</td>
<td>$$GPGSV,$</td>
</tr>
<tr>
<td></td>
<td>$$GLGSV$: GLONASS satellites</td>
<td>$$GLGSV,$</td>
</tr>
<tr>
<td></td>
<td>$$GAGSV$: GALILEO satellites</td>
<td>$$GAGSV,$</td>
</tr>
<tr>
<td></td>
<td>$$GSGSV$: SBAS satellites (including QZSS L1 SAIF)</td>
<td>$$GSGSV,$</td>
</tr>
<tr>
<td></td>
<td>$$GQGSV$: QZSS satellites</td>
<td>$$GQGSV,$</td>
</tr>
<tr>
<td></td>
<td>$$GBGSV$: BeiDou satellites</td>
<td>$$GBGSV,$</td>
</tr>
<tr>
<td>d1</td>
<td>Total number of messages</td>
<td>1-4</td>
</tr>
<tr>
<td>d2</td>
<td>Message number</td>
<td>1-4</td>
</tr>
<tr>
<td>d3</td>
<td>Total number of satellites in view</td>
<td>0-16</td>
</tr>
<tr>
<td>d4</td>
<td>Satellite PRN</td>
<td>GPS: 1-32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GLONASS: 65-96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SBAS: 1-44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GALILEO: 1-36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QZSS: 1-5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BEIDOU: 1-32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IRNSS: 1-7</td>
</tr>
<tr>
<td>d5</td>
<td>Elevation in degrees</td>
<td>0-90</td>
</tr>
<tr>
<td>d6</td>
<td>Azimuth in degrees</td>
<td>0-359</td>
</tr>
<tr>
<td>f7</td>
<td>SNR in dB.Hz</td>
<td>30.0-60.0</td>
</tr>
<tr>
<td>d8</td>
<td>Galileo satellite indicator:</td>
<td>1, 7</td>
</tr>
<tr>
<td></td>
<td>• 1: not a Galileo satellite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 7: a Galileo satellite</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>00-FFFF</td>
</tr>
</tbody>
</table>

Example

$\$PASHQ,GSV$

$\$GPGSV,3,1,12,04,21,308,44,11,16,311,42,14,62,185,50,15,03,047,,1*67$

$\$GSGSV,1,1,04,09,09,110,,14,31,153,42,16,35,200,46,19,36,165,48,1*67$

$\$GLGSV,3,2,09,76,19,038,40,77,20,093,44,82,35,192,48,83,58,285,52,1*7A$

$\$GQGSV,1,1,00,1*65$

$\$GAGSV,1,1,03,12,30,311,42,19,37,296,43,20,,43,1*77A$

$\$GBGSV,1,1,04,08,10,333,36,11,44,273,48,12,31,205,45,14,09,263,38,1*70$

See also $\$PASHS,NME$

Automatic Output of GSV Messages

This is a reminder on how to output GSV messages at regular intervals of time: Use the $\$PASHS,NME command with the syntax below:
$PASHS,NME,GSV,<port_ID>,ON,<Rate>

For more details on the $PASHS,NME command, refer to the
Set Command Library Chapter.
As an example, the command below will output GSV
messages on port A at a rate of 10 seconds:
$PASHS,NME,GSV,A,ON,10

HDT: True Heading

Function
This command is used to output an HDT message (last
computed true heading in degrees).

Command Format Syntax
$PASHQ,HDT[*cc]

Response Format Syntax
$GPHDT,f1,T*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>f1,T</td>
<td>Last computed heading value, in degrees</td>
<td>0-359.99</td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>"00-FF"</td>
</tr>
</tbody>
</table>

Example
$PASHQ,HDT
$GPHDT,121.2,T*35

See Also
$PASHS,NME,Automatic Output of HDT Messages

This is a reminder on how to output HDT messages at regular
intervals of time: Use the $PASHS,NME command with the
syntax below:
$PASHS,NME,HDT,<port_ID>,ON,<Rate>

For more details on the $PASHS,NME command, refer to the
Set Command Library Chapter.
As an example, the command below will output HDT
messages on port A at a rate of 1 second:
$PASHS,NME,HDT,A,ON,1
HPR: Extended Attitude Message, UTC Time-Tagged

Function
This command is used to output an attitude message tagged to UTC time. In terms of content, the HPR message is similar to the AT2 message.

Command Format
Syntax
$PASHQ,HPR[*cc]

Response Format
Syntax
$PASHR,HPR,m1,f2,f3,f4,f5,f6,d7,d8,d9,f10*cc
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>m1</td>
<td>UTC time of attitude data (hhmmss.ss).</td>
<td>000000.00-235959.99</td>
</tr>
<tr>
<td>t2</td>
<td>True heading angle in degrees.</td>
<td>000.00-359.99999</td>
</tr>
<tr>
<td>t3</td>
<td>Pitch angle in degrees.</td>
<td>±90.00000</td>
</tr>
<tr>
<td>t4</td>
<td>Roll angle in degrees.</td>
<td>±90.00000</td>
</tr>
<tr>
<td>t5</td>
<td>Carrier measurement RMS error, in meters.</td>
<td>Full range of real variables</td>
</tr>
<tr>
<td>t6</td>
<td>Baseline RMS error, in meters. (=0 if baseline is not constrained)</td>
<td>Full range of real variables</td>
</tr>
</tbody>
</table>
| d7 | Integer ambiguity:
• 0: Fixed
• >0: Float | 0, >0 |
| d8 | Attitude/heading mode status:
• 0: Operation with fixed baseline length
• 1: Calibration in progress
• 2: Flex (flexible) baseline mode ON | 0, 1, 2 |
| d9 | Character string of the type “y.xxx” defined as follows:
• “y” refers to the antenna setup:
 y=0: no length constraint is applied
 y=1: heading mode (one vector)
 y=2: attitude mode (2 vectors)
 y=3: attitude mode with 3 or more vectors
• Each “x” (0 to 9) represents the number of Double Differences (DD) used in the corresponding baseline.
 If this number is greater than 9, then “9” is reported.
 If there are only 2 vectors, the last x is “0”
 Double differences refer to the very last integer second time-tagged epoch. | y.xxx |
| f10 | PDOP corresponding to vector V12, as computed for the very last integer second (time-tagged epoch). Empty if PDOP unknown. | 00.00-99.99 |

Related Commands

$PASHS,NME

Automatic Output of HPR Messages

This is a reminder on how to output HPR messages at regular intervals of time: Use the $PASHS,NME command with the syntax below:

$PASHS,NME,HPR,<port_ID>,ON,<Rate>

390
For more details on the $PASHS,NME command, refer to the
Set Command Library Chapter.
As an example, the command below will output HPR
messages on port A at a rate of 0.2 second:

$PASHS,NME,HPR,A,ON,0.2

LBN: L-Band Almanac and Status

Function This command queries the receiver for the L-band
configuration and status.

Command Format Syntax

$PASHQ,LBN[*cc]

Parameters None.

Response Format Syntax

$PASHR,LBN,d1,d2,s3,s4,d5,d6,d7,d8,s9,s11,s12*cc
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Total number of messages</td>
<td>1-99</td>
</tr>
<tr>
<td>d2</td>
<td>Message number</td>
<td>1-d1</td>
</tr>
<tr>
<td>s3</td>
<td>L-band provider name</td>
<td>31 chars max.</td>
</tr>
<tr>
<td>s4</td>
<td>L-band satellite name</td>
<td>31 chars max.</td>
</tr>
<tr>
<td>d5</td>
<td>ID of internally assigned L-band satellite</td>
<td>1-99</td>
</tr>
<tr>
<td>d6</td>
<td>Frequency (Hz)</td>
<td>600, 1200, 2400, 2800</td>
</tr>
<tr>
<td>d7</td>
<td>Baud rate (bits/s)</td>
<td>600, 1200, 2400, 2800</td>
</tr>
<tr>
<td>d8</td>
<td>Longitude, in degrees</td>
<td>-179.9-180.0</td>
</tr>
<tr>
<td>s9</td>
<td>Type (hard coded or user-defined). See $PASHS,LBN,SAT) ALM, USR</td>
<td></td>
</tr>
<tr>
<td>s10</td>
<td>Satellite usage status:</td>
<td>ON, OFF</td>
</tr>
<tr>
<td>s11</td>
<td>Satellite tracking status:</td>
<td>1, 2, OFF</td>
</tr>
<tr>
<td>s12</td>
<td>Corrections from this satellite are:</td>
<td>ON, OFF</td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Examples

$PASHQ,LBN
$PASHR,LBN,RTX,USE,ONRTXAP,RTXWN,RTXEN,RTXSA*46

$PASHQ,LBN
$PASHR,LBN,RTX,USE,OFF*4A

$PASHQ,LBN
$PASHR,LBN,8,1,RTX,RTXAP,2,15398632500,600,-109.0,ALM,OFF,OFF,OFF*03
$PASHR,LBN,8,2,RTX,RTXWN,3,1557861500,600,-101.0,ALM,OFF,OFF,OFF*22
$PASHR,LBN,8,3,RTX,RTXEN,4,1557859000,600,-101.0,ALM,OFF,OFF,OFF*38
$PASHR,LBN,8,4,RTX,RTXSA,5,1557815000,2400,-98.0,ALM,OFF,OFF,OFF*00
$PASHR,LBN,8,5,RTX,RTXEA,6,15398632500,600,-98.0,ALM,OFF,OFF,OFF*14
$PASHR,LBN,8,6,RTX,RTXIO,7,1545490000,2400,25.0,ALM,OFF,OFF,OFF*11
$PASHR,LBN,8,7,RTX,RTXIO,8,1546530000,600,82.0,ALM,ON,1,ON*55
$PASHR,LBN,8,8,TRS,TERIA,16,1546310000,2400,25.0,ALM,OFF,OFF,OFF*39

Comments

- $PASHQ,LBN will not return any information about an L-band provider that has been made unavailable. The command will be NAKed if none of the L-band providers are available.
- If a parameter of an L-band provider is unavailable, inapplicable or unknown, then the corresponding field is reported empty.
LBN,BEM: User-Defined L-Band Satellites

Function
This command provides the list of user-defined L-band satellites.

Command Format
Syntax
$PASHQ,LBN,BEM[*cc]

Parameters
None.

Response Format
Syntax
$PASHR,LBN,BEM,s1,n(B,f2,f3,f4,f5,f6)*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Name of L-band satellite</td>
<td>31 characters max.</td>
</tr>
<tr>
<td>n</td>
<td>Indicates that the expression between brackets that follows will be repeated n times. There may be up to 5 different ellipses possible for a given L-band satellite, hence "n" ranging from 1 to 5.</td>
<td>1-5</td>
</tr>
<tr>
<td>B</td>
<td>Separator between footprint beam ellipses</td>
<td>-</td>
</tr>
<tr>
<td>f2</td>
<td>Beam foot note orientation, in degrees</td>
<td>-89.9 to 90.0</td>
</tr>
<tr>
<td>f3</td>
<td>Latitude axis radius, in degrees</td>
<td>0.0 to 90.0</td>
</tr>
<tr>
<td>f4</td>
<td>Longitude axis radius, in degrees</td>
<td>0.0 to 180.0</td>
</tr>
<tr>
<td>f5</td>
<td>Latitude center</td>
<td>-90.0 to 90.0</td>
</tr>
<tr>
<td>f6</td>
<td>Longitude center</td>
<td>-179.9 to 180.0</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>A00-AFF</td>
</tr>
</tbody>
</table>

Examples
$PASHQLBN,BEM
$PASHRLBN,BEM,RTXDD,8.70,1,40,30,0,37,B,0,1,40,60,35,0*1C
$PASHRLBN,BEM,RTXEE*1C

See Also
$PASHS,LBN,BEM
LCK: Lock Mode Status & Receiver Lock Status

Function
This command is used to read the current status of the lock mode and whether the receiver is currently locked or not.

Command Format

Syntax
$PASHQ,LCK[*cc]

Response Format

Syntax
$PASHR,LCK,s1,d2*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Lock mode status:</td>
<td>ON, OFF</td>
</tr>
<tr>
<td></td>
<td>• ON: Lock mode enabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• OFF: Lock mode disabled</td>
<td></td>
</tr>
<tr>
<td>d2</td>
<td>Receiver lock status:</td>
<td>0, 1</td>
</tr>
<tr>
<td></td>
<td>• 0: Receiver unlocked</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1: Receiver locked</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>00-FF</td>
</tr>
</tbody>
</table>

Example

$PASHQ,LCK
$PASHR,LCK,ON,1*00

(Lock mode is ON and receiver currently locked)

Related Commands

$PASHS,LCK,MOD (set command)
$PASHS,LCK,ON
$PASHS,LCK,OFF
$PASHS,ATH,PWD
$PASHQ,ATH

LCS: Local Coordinate System Status

Function
This command asks the receiver to indicate the coordinate system it currently uses to deliver its position solution. A local coordinate system may be used provided its characteristics are received through the appropriate RTCM 3.1 message (1021-1028) from the base used.
Command Format

Syntax

$PASHQ,LCS[*cc]

Parameters

None.

Response Format

Syntax

$PASHR,LCS,s[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>Status:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ON: Local coordinate system used when available</td>
<td>ON, OFF, HOR, VER</td>
</tr>
<tr>
<td></td>
<td>• OFF: Coordinate system used is WGS84 necessarily.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• HOR: Horizontal coordinates are local</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• VER: Vertical coordinate is local</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>00-FF</td>
</tr>
</tbody>
</table>

Example

$PASHQ,LCS
$PASHR,LCS,ON*05

Relevant Set

$PASHS,LCS

LOG: Editing a Log File

Function

This command is used to edit the specified or current log file. A log file lists all events related to IP connections with the receiver.

Command Format

Syntax

$PASHQ,LOG,[d][*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>Index number of the log file you want to edit. If d is omitted, the current log file is edited.</td>
<td>0-800</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>00-FF</td>
</tr>
</tbody>
</table>
Response format

Syntax

The response is formatted as follows:

Date: <Year>-<Month>-<Day>
Maximum size: x Mb Duration: xx days
hh:mm:ss: <message 1>
hh:mm:ss: <message 2>

Parameters

- The first line contains the date when the log file was created.
- The second line indicates the maximum size (in Mb) permitted for the file as well as the time, in days, during which it is kept in memory.
- Each of the lines that follow contains a message that describes a connection event (time of event, beginning or end of connection, type of connection, identification of the connected device).

Example

```
$PASHQ,LOG*33
Date: 2014-04-08
Maximum size: 1 Mb Duration: 20 days
14:12:34: connect server,stream=I1,port=1001,IP=12.34.87.22
14:15:33: connect client,stream=I2,IP=23.33.43.12,port=7721
15:36:12: disconnect server,stream=I1,IP=1001,IP=12.34.87.22
```

Related Commands

- `$PASHS,LOG,PAR`
- `$PASHS,LOG,DEL`
- `$PASHQ,LOG,LST`

LOG,LST: Listing Log Files

Function

This command is used to read the list of log files present in the receiver.

Command Format

Syntax

```
$PASHQ,LOG,LST[*cc]
```
Query Command Library

Parameters
None.

Response format Syntax
$PASHR,LOG,LST,d1,d2,s3,d4*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Current number of log files in the receiver</td>
<td>0-900</td>
</tr>
<tr>
<td>d2</td>
<td>File index</td>
<td>0-900</td>
</tr>
<tr>
<td>s3</td>
<td>Filename</td>
<td>255 characters max.</td>
</tr>
<tr>
<td>d4</td>
<td>Size, in bytes</td>
<td>0-134217728</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Example

$PASHQ,LOG,LST*54
$PASHQ,LOG,LST,4,0,20090408.log,1769897*01
$PASHQ,LOG,LST,4,1,20090407.log,1769876*00
$PASHQ,LOG,LST,4,2,20090406.log,1769787*03
$PASHQ,LOG,LST,4,3,20090405.log,1769787*01

Related Commands
$PASHS,LOG,PAR
$PASHS,LOG,DEL
$PASHQ,LOG

LOG,PAR: Log File Settings

Function
This command is used to read the settings of any new log file created in the receiver.

Command Format Syntax
$PASHQ,LOG,PAR[*cc]

Parameters
None.

Response format Syntax
$PASHR,LOG,PAR,s1,d2,d3*cc
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Log file control parameter:</td>
<td>ON, OFF</td>
</tr>
<tr>
<td></td>
<td>• ON: Generation of log files enabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• OFF: Generation of log files disabled</td>
<td></td>
</tr>
<tr>
<td>d2</td>
<td>Maximum size, in Mbytes</td>
<td>1-90</td>
</tr>
<tr>
<td>d3</td>
<td>Number of days during which a log file is kept in memory.</td>
<td>1-100</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Example

$PASHQ,LOG,PAR*SC
$PASHR,LOG,PAR,OFF,120*0F

Related Commands

$PASHS,LOG,PAR (set command)

LTN: Latency

Function

This command returns the current value of latency.

Command Format

Syntax

$PASHQ,LTN[*cc]

Parameters

None.

Response Format

Syntax

$PASHR,LTN,d1*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Latency in milliseconds.</td>
<td>0-10000</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Example

Querying the value of latency:

$PASHQ,LTN
$PASHR,LTN,60*08

Comments

Latency refers to the time it takes for the receiver to compute a position from the measurement time tag and prepare data.
to be transmitted through the serial port. The value of latency depends on the number of locked satellites.

Related Commands

$PASHS,NME

Automatic Output of LTN Messages

This is a reminder on how to output LTN messages at regular intervals of time: Use the $PASHS,NME command with the syntax below:

$PASHS,NME,LTN,<port_ID>,ON,<Rate>

For more details on the $PASHS,NME command, refer to the Set Command Library Chapter.

As an example, the command below will output LTN messages on port A at a rate of 10 seconds:

$PASHS,NME,LTN,A,ON,10

MDP: Port Communication Mode

Function

This command is used to read the communication mode currently used on port D.

Command Format Syntax

$PASHQ,MDP,c1[*cc]

Response Format Syntax

$PASHR,MDP,c1,s2*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>Communication port (ID)</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>Communication mode currently used:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 232, RS232 serial port</td>
<td>232, CAN, I2C</td>
</tr>
<tr>
<td></td>
<td>• CAN: CAN bus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• I2C: I²C serial bus</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>00-FF</td>
</tr>
</tbody>
</table>

Example

$PASHQ,MDP,D
$PASHR,MDP,D,232*5A
MEM: Selected Memory Device

Function
This command is used to read which memory the receiver is currently using.

Command Format Syntax
$PASHQ,MEM[*cc]

Response Format Syntax
$PASHR,MEM,d[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>Memory used:</td>
<td>0, 2</td>
</tr>
<tr>
<td></td>
<td>• 0: Internal memory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2: USB memory</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>*00-FF</td>
</tr>
</tbody>
</table>

Example
$PASHQ,MEM
$PASHR,MEM,0*2D

Related Commands
$PASHS,MEM (set command)

NPT: How Position Type is Reported in POS Message

Function
This command is used to query the receiver for the set of flags currently used to describe the position solution type provided in POS messages.

Command Format Syntax
$PASHQ,NPT[*cc]

Response Format Syntax
$PASHR,NPT,d1,d2*cc

400
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
</table>
| d1 | Flag set number:
 • If "0" (standard position type), possible tags are:
 – 1: SBAS or BeiDou Differential
 – 2: RTX Float or RTX Float dithered
 – 3: RTX Fixed or RTX Fixed dithered
 • If "1" (specific position type), possible tags are:
 – 9: SBAS differential
 – 10: BeiDou Differential
 – 12: RTX Float
 – 13: RTX Fixed
 – 22: RTX Float dithered
 – 23: RTK Fixed dithered | 0,1 |
| d2 | (Not significant) | |
| *cc | Checksum | 00-FF |

Example

$PASHQ,NPT
$PASHR,NPT,0,0*3E
(standard type is used)

Related Commands

$PASHS,NPT (set command)

NTP: Network Time Protocol Server

Function

This command is used to query the receiver for the NTP (Network Time Protocol) server status.

Command Format Syntax

$PASHQ,NTP[*cc]

Response Format Syntax

$PASHR,NTP,s1,d2*cc
Query Command Library

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>NTP server ON/OFF setting:</td>
<td>ON, OFF</td>
</tr>
<tr>
<td></td>
<td>• ON: Enabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• OFF: Disabled</td>
<td></td>
</tr>
<tr>
<td>d2</td>
<td>NTP server current state:</td>
<td>0, 1</td>
</tr>
<tr>
<td></td>
<td>• 0: Stopped</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1: Running</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Examples

NTP server disabled:

$PASHQ,NTP
$PASHR,NTP,OFF,0*41

NTP server enabled but not active (because no GPS time available):

$PASHQ,NTP
$PASHR,NTP,ON,0*0F

NTP server enabled and active:

$PASHQ,NTP
$PASHR,NTP,ON,1*0E

Query Command

$PASHQ,NTP

NTR: NTRIP Settings

Function

This command is used to read the current NTRIP settings. When c6 is omitted in the query command, the returned NTRIP settings are those for the port defined through the $PASHS,NTR,PAR command last run.

Command Format Syntax

$PASHQ,NTR[.,c6][*cc]

Response Format Syntax

$PASHR,NTR,ADD=s1,PRT=d2,LOGIN=s3,PWD=s4,TYP=d5,IPP=c6,ACN=d7[*cc]
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD=d1</td>
<td>Caster IP address or host name</td>
<td>32 characters max.</td>
</tr>
<tr>
<td>PRT=d2</td>
<td>Caster port number</td>
<td>0-65535</td>
</tr>
<tr>
<td>LGN=s3</td>
<td>Login</td>
<td>32 characters max.</td>
</tr>
<tr>
<td>PWD=s4</td>
<td>Password</td>
<td>32 characters max.</td>
</tr>
<tr>
<td>TYP=d5</td>
<td>Caster type:</td>
<td>0-3</td>
</tr>
<tr>
<td></td>
<td>• 0: Client</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1: Server</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Client V2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Server V2</td>
<td></td>
</tr>
<tr>
<td>IPP=c6</td>
<td>Internet port used to connect to the caster:</td>
<td>P, Q</td>
</tr>
<tr>
<td></td>
<td>• P: TCP/IP stream 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Q: TCP/IP stream 2</td>
<td></td>
</tr>
<tr>
<td>ACN=d7</td>
<td>Auto-connection:</td>
<td>0, 1</td>
</tr>
<tr>
<td></td>
<td>• 0: After a power cycle, there won’t be an automatic NTRIP connection (default)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1: After a power cycle, the NTRIP connection will be restored</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>"00-FF"</td>
</tr>
</tbody>
</table>

Example

$PASHQ,NTR,MTP\[c1]\[*cc\]

See also

$PASHQ,NTR,TBL

NTR,MTP: Connection to Mount Point

Function

This command is used to read the current NTRIP mount point to which the specified Internet port is connected.

Command Format

Syntax

$PASHQ,NTR,MTP\[c1]\[*cc\]
Parameters

None.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>internet port used for the connection to the embedded NTRIP caster.</td>
<td>P, Q</td>
</tr>
<tr>
<td></td>
<td>• P: TCP/IP stream 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Q: TCP/IP stream 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If c1 is omitted, the receiver will return the mount point name corresponding to the port last defined through the $PASHS,NTR,PAR command.</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Response Format Syntax

$PASHR,NTR,MTP,s1*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>NTRIP mount point name</td>
<td>100 characters max. or "OFF"</td>
</tr>
<tr>
<td></td>
<td>If "OFF", the port is not connected to any NTRIP caster mount point.</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Example

$PASHQ,NTR,MTP,P

$PASHQ,NTR,MTP

$PASHR,NTR,MTP,NAN2*06

Related Commands

$PASHS,NTR,MTP (set command)

NTR,TBL: Source Table

Function

This command is used to read the source table stored in the receiver.

Command Format Syntax

$PASHQ,NTR,TBL[*cc]

Response Format Syntax

$PASHR,NTR,TBL

SOURCETABLE 200 OK

<source table as specified in the RTCM standard>
Parameters

Source table as defined in the NTRIP standard.

Example

$PASHQ,NTR,TBL
$PASHR,NTR,TBL
SOURCETABLE 200 OK
Content-Type: text/plain
Content-Length: 7864

CAS;129.217.182.51;80;ICD,BKG;G:0;http://igs.ifag.de/GREF.htm;none;
denise.dettmering@bkg.bund.de;none
NET;IGSIGLOS;BKG;G:0;http://igscb.jpl.nasa.gov/projects/rtwg
;none;denise.dettmering@bkg.bund.de;none
STR;FFMJ2;Frankfurt;RTCM2.0;1(1),3(19),16(59);0;GPS;GREF;GER;50;12;6
68;0;1;GPSNetV1.9;none;N;N;560;Demo
STR;FFMJ1;Frankfurt;RTCM2.1;3(19),16(59),18(1),19(1);2;GPS;GREF;GER;50;09;8;66;0;GPSNet
V1.9;none;N;2800;Demo
STR;FFMJ0;Frankfurt;RAW;Compact(1);2;GPS+GLO;IGSIGLOS;
GER;50;09;8;66;0;Javad Legacy E;none;N;3600;Demo
STR;LEJ0;Leipzig;RAW;Compact(1);2;GPS+GLO;IGSIGLOS;
GER;51;33;12;37;0;Javad Legacy E;none;B;N;3600;none
STR;WTZJ0;Wettzell;RAW;Compact(1);2;GPS+GLO;IGSIGLOS;
GER;49;13;12;88;0;Javad Legacy E;none;B;N;3600;none
STR;HELJ0;Helgoland;RAW;Compact(1);2;GPS+GLO;IGSIGLOS;
GER;54;18;7;88;0;Javad Legacy E;none;B;N;3600;none
STR;TITZ0;Titz;RAW;Compact(1);2;GPS+GLO;IGSIGLOS;
GER;51;00;8;42;0;Javad Legacy E;none;B;N;3600;none
STR;HUEG0;Huegelheim;RAW;Compact(1);2;GPS+GLO;IGSIGLOS;
GER;47;82;7;62;0;Javad Legacy E;none;B;N;3600;none
STR;DREJ0;Dresden;RAW;Compact(1);2;GPS+GLO;IGSIGLOS;
GER;51;05;13;73;0;Javad Legacy E;none;B;N;3600;none
STR;SASS0;Sassnitz;RAW;Compact(1);2;GPS+GLO;IGSIGLOS;
GER;54;51;13;64;0;Javad Legacy E;none;B;N;3600;none
STR;KARJ0;Karlsruhe;RAW;Compact(1);2;GPS+GLO;IGSIGLOS;
GER;49;01;8;41;0;Javad Legacy E;none;B;N;3600;none
STR;WILH0;Wilhelmshaven;RTCM
2.0;1(1);3(19),16(59);0;GPS;GREF;GER;53;52;8;10;0;1;GPSNet
V1.9;none;B;N;560;VRS
ENDSOURCETABLE

See also

$PASHS,NTR,LOD
$PASHS,NTR,PAR
$PASHS,NTR,MTP
OBS: Observations Usage

Function
This command is used to ask the receiver in which way the available GNSS signals are used.

Command Format
Syntax

$PASHQ,OBS[^cc]

Response Format
Syntax

$PASHR,OBS,s[^cc]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
</table>
| s | Way the available GNSS signals are used:
• ALL: All signals are used
• OPT: Only the best signal per GNSS band is used
• LEG: Same as OPT but only legacy L1P and L2P (not L2C) signals are output. | ALL, OPT, LEG |
| ^cc | Optional checksum | 00-FF |

Example

$PASHQ,OBS
$PASHR,OBS,OPT*4D

Relevant Set Command

$PASHS,OBS

OCC: Occupation State and Parameters

Function
This command is used to read the current occupation settings.

Command Format
Syntax

$PASHQ, OCC[^cc]

Response Format
Syntax

$PASHR, OCC,d1,d2[^s3,s4]^cc

406
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Occupation type:</td>
<td>0-2</td>
</tr>
<tr>
<td></td>
<td>• 0: Static</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1: Quasi-static</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2: Dynamic</td>
<td></td>
</tr>
<tr>
<td>d2</td>
<td>Occupation state:</td>
<td>0-1</td>
</tr>
<tr>
<td></td>
<td>• 0: Occupation in progress</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1: No occupation in progress</td>
<td></td>
</tr>
<tr>
<td>s3</td>
<td>Occupation name</td>
<td>255 characters max.</td>
</tr>
<tr>
<td>s4</td>
<td>Occupation description</td>
<td>255 characters max.</td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Examples

$PASHQ,OCC
$PASHR,OCC,2,1*38

Relevant Set Command

$PASHS,OCC

OPTION: Installed Receiver Firmware Options

Function

This command is used to list the firmware options currently installed in the receiver. The returned message includes one response line per installed option. The first line provides the receiver serial number.

Command Format Syntax

$PASHQ,OPTION[*cc]

Response Format Syntax

$PASHR,OPTION,c1,s2,h3*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>Option ID</td>
<td>(See table below)</td>
</tr>
<tr>
<td>s2</td>
<td>Option label</td>
<td>(See table below)</td>
</tr>
<tr>
<td>h3</td>
<td>Hexadecimal unlock code</td>
<td>13 characters max.</td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>*00-*FF</td>
</tr>
<tr>
<td>Option ID</td>
<td>Label</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>@1</td>
<td>GEOPENCING_WW</td>
<td>Worldwide enabled receiver</td>
</tr>
<tr>
<td>@2</td>
<td>GEOPENCING_CHINA</td>
<td>China-only enabled receiver</td>
</tr>
<tr>
<td>@3</td>
<td>GEOPENCING_JAPAN</td>
<td>Japan-only enabled receiver</td>
</tr>
<tr>
<td>@4</td>
<td>GEOPENCING_BRAZIL</td>
<td>Brazil-only enabled receiver</td>
</tr>
<tr>
<td>@5</td>
<td>GEOPENCING_N_AMERICA</td>
<td>North-America-only enabled receiver</td>
</tr>
<tr>
<td>@6</td>
<td>GEOPENCING_L_AMERICA</td>
<td>Latin-America-only enabled receiver</td>
</tr>
<tr>
<td>@7</td>
<td>GEOPENCING_RUSSIA</td>
<td>Russia-only enabled receiver</td>
</tr>
<tr>
<td>@8</td>
<td>GEOPENCING_INDIA</td>
<td>India-only enabled receiver</td>
</tr>
<tr>
<td>@9</td>
<td>GEOPENCING_TURKEY</td>
<td>Turkey-only-enabled receiver</td>
</tr>
<tr>
<td>2</td>
<td>2HZ</td>
<td>Enables output rate up to 2 Hz (for position/raw data)</td>
</tr>
<tr>
<td>3</td>
<td>Dithered RTK 30/30</td>
<td>Dithered RTK 30/30: 30 cm horizontal, 30 cm vertical (RTK only). [J] and [7] predominate over [3].</td>
</tr>
<tr>
<td>4</td>
<td>ViewPoint RTX</td>
<td>RTX L1-only mode</td>
</tr>
<tr>
<td>5</td>
<td>5HZ</td>
<td>Enables update rate up to 5 Hz for position and raw data. With this option enabled, when using $PASHS,POP to set the internal update rate, remember only “POP,1” and “POP,5” are allowed, not “POP,2”.</td>
</tr>
<tr>
<td>6</td>
<td>10HZ</td>
<td>Enables update rate up to 10 Hz for position and raw data</td>
</tr>
<tr>
<td>7</td>
<td>Dithered RTK 7/2</td>
<td>Dithered RTK 7/2: 7 cm horizontal, 2 cm vertical (RTK only). [J] predominates over [7].</td>
</tr>
<tr>
<td>8</td>
<td>50HZ</td>
<td>Enables update rate up to 50 Hz for position and raw data</td>
</tr>
<tr>
<td>9</td>
<td>FieldPoint RTX</td>
<td>CPT degraded version. Dominates RangePoint RTX</td>
</tr>
<tr>
<td>10</td>
<td>10-10CM</td>
<td>Dithered RTK 10/10: 10cm Horizontal Precision, 10cm Vertical Precision. (RTK only). [J] and [F] override [10]</td>
</tr>
<tr>
<td>B</td>
<td>BEIDOU</td>
<td>BEIDOU satellites tracking</td>
</tr>
<tr>
<td>C</td>
<td>CPRTX</td>
<td>Enables Trimble CenterPoint RTX</td>
</tr>
<tr>
<td>c</td>
<td>CASTER</td>
<td>Embedded NTRIP caster</td>
</tr>
<tr>
<td>D</td>
<td>DUO</td>
<td>Allows use of dual-sensor mode, raw data output from both sensors, internal heading between the two antennas, or two independent position for each antenna.</td>
</tr>
<tr>
<td>Option ID</td>
<td>Label</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>E</td>
<td>ATTITUDE</td>
<td>Same as D option. Additionally, enables full-altitude engine with up to 4 sources of raw data (up to 4 antennas) regardless of their assignment across two or more boards. Computing external heading is also possible.</td>
</tr>
<tr>
<td>F</td>
<td>FLYINGRTRK</td>
<td>Enables Flying RTK computation (position and vector). [J], [7] and [3] predominate over [F].</td>
</tr>
<tr>
<td>G</td>
<td>GLONASS</td>
<td>GLONASS satellites tracking</td>
</tr>
<tr>
<td>I</td>
<td>RAIM</td>
<td>Enables receiver to output RAIM-related messages</td>
</tr>
<tr>
<td>J</td>
<td>RTKROVER</td>
<td>Allows fixed RTK computations (position and vector). ([J]) option predominates over all other RTK options ([F], [3], [7]).</td>
</tr>
<tr>
<td>K</td>
<td>RTKBASE</td>
<td>Enables the receiver to generate differential messages: * RTCM 2.3 * RTCM 3.0 * CMR / CMR+ * ATOM</td>
</tr>
<tr>
<td>L</td>
<td>LBAND</td>
<td>Enables L-band reception</td>
</tr>
<tr>
<td>N</td>
<td>GPS</td>
<td>GPS+SBAS+QZSS satellites tracking</td>
</tr>
<tr>
<td>O</td>
<td>GALILEO</td>
<td>GALILEO satellites tracking</td>
</tr>
<tr>
<td>P</td>
<td>RPRTX</td>
<td>Enables Trimble RangePoint RTX</td>
</tr>
<tr>
<td>R</td>
<td>RECORD</td>
<td>Enables data recording in memory. ATL.LOG data can be recorded without this option installed.</td>
</tr>
<tr>
<td>W</td>
<td>20HZ</td>
<td>Enables output rate up to 20 Hz (for position/raw data)</td>
</tr>
<tr>
<td>W1</td>
<td>WARRANTY 1 YEAR</td>
<td>Extends warranty period by one year.</td>
</tr>
<tr>
<td>W2</td>
<td>WARRANTY 2 YEAR</td>
<td>Extends warranty period by two years.</td>
</tr>
<tr>
<td>X</td>
<td>L1 TRACKING</td>
<td>Enables tracking of the following signals: * GPS, QZSS, SBAS L1 * GLONASS G1 * GALILEO E1 * BEIDOU B1 (phase 2) * This option is ALWAYS set.</td>
</tr>
<tr>
<td>Y</td>
<td>L2 TRACKING</td>
<td>Enables tracking of the following signals: * GPS, QZSS L2 * GLONASS G2 * GALILEO E5b * BEIDOU B2</td>
</tr>
</tbody>
</table>
Example

$PASHQ,OPTION
$PASHQ,OPTION,0,SERIAL NUMBER,2007512237A
$PASHQ,OPTION,K,RTKBASE,6756975c71766*36
$PASHQ,OPTION,G,GLONASS,6756945714671*7B

Related Commands

$PASHS,OPTION (set command)

OPTION,EXP: Installed Firmware Options and Expiration Dates

Function

This command is used to read the currently installed firmware options, and for those that are installed only temporarily, their expiration dates. Each response line describes an option. The first line contains the receiver’s serial number.

Command Format

Syntax

$PASHQ,OPTION,EXP[*cc]

Response Format

Syntax

$PASHR,OPTION,s1,s2,h3[,s4]*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Option ID</td>
<td>2 characters max.</td>
</tr>
<tr>
<td>s2</td>
<td>Option label</td>
<td></td>
</tr>
<tr>
<td>h3</td>
<td>Unlock code (hexadecimal)</td>
<td>13 characters max.</td>
</tr>
<tr>
<td>s4</td>
<td>Expiration date (ddmmyyyy) Blank if the option is permanent.</td>
<td>8 characters</td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>00-FF</td>
</tr>
</tbody>
</table>

Example

$PASHQ,OPTION,EXP
$PASHR,OPTION,0,SERIAL NUMBER,5426C01549*37
$PASHR,OPTION,1,GEOFENCING,WW,45CE159F386CE*31
$PASHR,OPTION,N,GPS,45CE1567A00E*61
$PASHR,OPTION,G,GLONASS,45CE15D2B731B*17
$PASHR,OPTION,O,GALILEO,45CE14B8994AA*1D
$PASHR,OPTION,B,BEIDOU,45CE166CC5179*35
$PASHR,OPTION,X,L1TRACKING,45CE13C47D59B*3E
$PASHR,OPTION,Y,L2TRACKING,45CE10952A424*38
$PASHR,OPTION,W,20HZ,45CE1468C00E*52

410
Related Commands $PASHS,OPTION

OUT: Current Status of Periodic Messages

Function This command is used to read the status of all the periodic messages programmed on the requested port (or the current port if no port is specified).

Command Format Syntax
$PASHQ,OUT,[c1][*cc]

Response Format Syntax
$PASHR,OUT,c1,s2*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>ID of interrogated port:</td>
<td>A-D, F, I, P, Q</td>
</tr>
<tr>
<td></td>
<td>• A, B, D: Serial port</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• C: USB serial port</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• I, P, Q, F: TCP/IP stream</td>
<td></td>
</tr>
<tr>
<td>s2</td>
<td>Message status:</td>
<td>ON, OFF</td>
</tr>
<tr>
<td></td>
<td>• ON: All periodic messages are enabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• OFF: All periodic messages are suspended</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>00-FF</td>
</tr>
</tbody>
</table>

Example
$PASHQ,OUT
$PASHR,OUT,A,ON*55

Related Commands $PASHS,OUT (set command)
OUT,GSF: Current Status of GSOF Messages

Function
This command is used to list the active GSOF messages, if any, on a given port. If no port is specified, the command returns the list of active GSOF messages on all ports.

Command Format Syntax
$PASHQ,OUT,GSF[,]c1][*cc]

Parameters
None.

Response Format Syntax
$PASHR,OUT,GSF,c1,s2,[n(s3,s4,f5)][*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>Output port for which you are listing the currently active GSOF messages: • Serial port: A, B, D • USB serial port: C • TCP/IP client stream: P, Q • TCP/IP server stream: I, F • Routed to be saved as G-file: M</td>
<td>A,B,C,D,F,I,P,Q,M</td>
</tr>
<tr>
<td>s2</td>
<td>Output control: • ON: GSOF messages enabled • OFF: GSOF messages disabled</td>
<td>ON, OFF</td>
</tr>
<tr>
<td>s3</td>
<td>Message group</td>
<td>GSF</td>
</tr>
<tr>
<td>s4</td>
<td>Message number</td>
<td>See table below.</td>
</tr>
<tr>
<td>f5</td>
<td>Message output rate (in seconds)</td>
<td>0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60, 120, etc., integer minute up to 960.</td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Message Type Description

<table>
<thead>
<tr>
<th>Message Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>POSITION TIME</td>
</tr>
<tr>
<td>2</td>
<td>LAT, LONG, HEIGHT</td>
</tr>
<tr>
<td>3</td>
<td>ECEF POSITION</td>
</tr>
<tr>
<td>8</td>
<td>VELOCITY DATA</td>
</tr>
<tr>
<td>9</td>
<td>PDOP INFO</td>
</tr>
</tbody>
</table>
Example

```plaintext
$PASHQ,OUT,GSF
$PASHR,OUT,GSF,A,ON,GSF,1,1.000,GSF,33,1.000*62
$PASHR,OUT,GSF,C,ON,GSF,1,1.000,GSF,2,1.000,GSF,8,1.000*74
$PASHQ,OUT,GSF,A
$PASHR,OUT,GSF,A,ON,GSF,1,1.000,GSF,2,1.000,GSF,8,1.000*74
```

Related Commands

- `$PASHS,OUT`
- `$PASHS,NME`
- `$PASHS,ATM`
- `$PASHS,RT2`
- `$PASHS,RT3`
- `$PASHS,CMR`

OUT,MSG: Output Messages

Function
This command is used to list all the output messages currently active on the specified port, or on all the ports if no port is specified in the command.

Command Format

Syntax

```plaintext
$PASHQ,OUT,MSG[oc][*cc]
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
</table>
| c1 | Port selection:
 • A, B, D: Serial port
 • C: USB serial port
 • M: Internal memory
 • F, I, P, Q: TCP/IP stream
 • c1 missing: Lists all currently active output messages on all ports. | A-D, F, I, M, P, Q |
| d0 | Sensor number | 1, 2 |
| c1 | Selected output port:
 • A, B, D: Serial port
 • C: USB serial port
 • M: Internal memory
 • F, I, P, Q: TCP/IP stream | A-D, F, I, M, P, Q |
| s2 | Periodic output message status:
 • ON: Enabled
 • OFF: Suspended | ON, OFF |
| s3 | Message group | ATM, CMR, NME, RT2, RT3 |
| s4 | Message name | See $PASHS commands relevant to ATM, CMR, NME, RT2 and RT3. |
| f5 | Message output rate, in seconds | 0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60, 120, etc., integer minutes up to 960. |
| *cc | Checksum | *00-*FF |

Response Format Syntax

```
$PASHR,[d0],[OUT,MSG,c1,s2,[p(s3,s4,f5)]]["cc"]
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d0</td>
<td>Sensor number</td>
<td>1, 2</td>
</tr>
</tbody>
</table>
| c1 | Selected output port:
 • A, B, D: Serial port
 • C: USB serial port
 • M: Internal memory
 • F, I, P, Q: TCP/IP stream | A-D, F, I, M, P, Q |
| s2 | Periodic output message status:
 • ON: Enabled
 • OFF: Suspended | ON, OFF |
| s3 | Message group | ATM, CMR, NME, RT2, RT3 |
| s4 | Message name | See $PASHS commands relevant to ATM, CMR, NME, RT2 and RT3. |
| f5 | Message output rate, in seconds | 0.05, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60, 120, etc., integer minutes up to 960. |
| *cc | Checksum | *00-*FF |

Examples

```
$PASHQ,OUT,MSG
$PASHR,1,OUT,MSG,A,ON,ATM,BLN,1.000,ATM,TT1,1.000,ATM,TT2,1.000,ATM,TT3,1.000*92
$PASHR,1,OUT,MSG,B,ON*11
$PASHR,1,OUT,MSG,D,ON,ATM,PVT,1.000,ATM,ANG,1.000,ATM,BLN,1.000,ATM,VEC,1.000,ATM,NAV,1.000,ATM,DATA,1.000,ATM,RX004,1.000,ATM,TT1,1.000,ATM,TT2,1.000,ATM,TT3,1.000,ATM,ATR,1.000,ATM,EVT,1.000*55
$PASHR,1,OUT,MSG,G,ON,NME,ZDA,1.000,ATM,PVT,0.100,ATM,ANG,1.000,ATM,BLN,1.000,ATM,VEC,1.000,ATM,NAV,1.000,ATM,STA,1.000*1B
```
$PASHR,1,OUT,MSG,M,OFF,ATM,PVT,1.000,ATM,NAV,1.000,ATM,RNX000,1.000,ATM,ATR,1.000,ATM,EVT,1.000*74
$PASHR,2,OUT,MSG,A,ON*11
$PASHR,2,OUT,MSG,B,ON*12
$PASHR,2,OUT,MSG,D,ON*14
$PASHR,2,OUT,MSG,G,ON,ATM,PVT,0.100*1E
$PASHR,2,OUT,MSG,M,OFF*53

$PASHQ,OUT,MSG,M
$PASHR,1,OUT,MSG,M,OFF,ATM,PVT,1.000,ATM,NAV,1.000,ATM,RNX000,1.000,ATM,ATR,1.000,ATM,EVT,1.000*74
$PASHR,2,OUT,MSG,M,OFF*53

Related Commands
$PASHS,OUT
$PASHS,NME
$PASHS,ATM
$PASHS,RT2
$PASHS,RT3
$PASHS,CMR

OUT,PGN: Current Status of CAN-NMEA 2000 Messages

Function
This command is used to list the active NMEA 2000 messages, if any, on the CAN port.

Command Format
Syntax
$PASHQ,OUT,PGN[,c1][*cc]

Parameters
None.

Response Format
Syntax
$PASHR,OUT,PGN,c1,s2,[n(s3,s4,f5)][*cc]

Parameters
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>CAN port (V necessarily):</td>
<td>V</td>
</tr>
<tr>
<td>s2</td>
<td>Output control:</td>
<td>ON, OFF</td>
</tr>
<tr>
<td></td>
<td>• ON: GSOF messages enabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• OFF: GSOF messages disabled</td>
<td></td>
</tr>
<tr>
<td>s3</td>
<td>Message group</td>
<td>PGN</td>
</tr>
<tr>
<td>s4</td>
<td>Message type</td>
<td>See table below.</td>
</tr>
</tbody>
</table>
Query Command Library

Example

$PASHQ,PEM[*cc]
$PASHR,PEM,d1*cc

Related Commands

$PASHQ,OUT,PGN
$PASHR,OUT,PGN, V, ON, PGN, 129026, 1.000, PGN, 129029, 0.100*17

PEM: Position Elevation Mask

Function
This command is used to read the current value of the elevation mask used in the position processing. The read value is the one used in all engines and sensors.

Command Format

Syntax
$PASHQ,PEM[*cc]

Response Format

Syntax
$PASHR,PEM,d1*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Elevation mask angle</td>
<td>0-30°</td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Example

$PASHQ,PEM
$PASHR,PEM,9*39

416
Related Commands

$PASHS,PEM (set command)
$PASHQ,ELM

PGS: Primary GNSS System

Function
This command is used to know which GNSS is currently used as the primary GNSS system.

Command Format Syntax
$PASHQ,PGS[*cc]

Response Format Syntax
$PASHR,PGS,s1*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>GNSS system used as primary:</td>
<td>GPS, GLO, BDS, GAL</td>
</tr>
<tr>
<td></td>
<td>• GPS: GPS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• GLO: GLONASS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• BDS: BeiDou</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• GAL: Galileo</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>00-FF</td>
</tr>
</tbody>
</table>

Example
$PASHQ,PGS
$PASHR,PGS,GPS4D

Related Commands
$PASHS,PGS (set command)

PHE: Active Edge of Event Marker Pulse

Function
This command is used to read the current choice of active edge for the event marker pulse (used in photogrammetry).

Command Format Syntax
$PASHQ,PHE[*cc]
Query Command Library

Response Format Syntax
$PASHR,PHE,c*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>Active edge:</td>
<td>R, F</td>
</tr>
<tr>
<td></td>
<td>• R: Rising</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• F: Falling</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Example
$PASHQ,PHE
$PASHR,PHE,R*57

Related Commands
$PASHS,PHE
$PASHS,NME,TTT

PIN: Programmable Pin

Function
This command returns the current settings of the specified programmable pin on the I/O connector. The response is returned on the port routing the query command.

Command Format Syntax
$PASHQ,PIN[d1][*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Identification of the programmable pin ID. If d1 is not specified, the response will include information about all the available programmable pins.</td>
<td>0</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Response Format Syntax
$PASHR,PIN,d1,a2[d3]*cc

418
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Programmable pin ID recalled in this field</td>
<td>0, 1</td>
</tr>
<tr>
<td>s2</td>
<td>Pin function status:</td>
<td>OFF, PAV, RSP, LED, BDL or GPO</td>
</tr>
<tr>
<td>d3</td>
<td>Depends on s2 value:</td>
<td>0 or 1</td>
</tr>
</tbody>
</table>

- s2=OFF: d3 has been omitted
- s2=PAV: d3 is the number of consecutive seconds while position is not computed that causes the signal on the pin to switch to low level.
- s2=RSP: d3 has been set to “1” to make Radar Simulated Pulse output available on the pin.
- s2=LED: “1” means red LED is used, and “2”, green LED is used.
- s2=BDL: d3=1 means sat tracking status is output; d3=2 means RTK link status is output; d3=3 means power status is output.
- If d3 is omitted or empty, then sat tracking status is output for MFO1 and RTK link status is output for MFO2.
- s2=GPO: d3=0 means active logic level is “0”; d3=1 means active logic level is “1”.

*cc Optional checksum *00-*FF

Example

- `$PASHQ,PIN`
- `$PASHR,PIN,0,LED,2*40`
 (TIOA1 is green LED output)
- or
- `$PASHR,PIN,0,LED,1*42`
 (TIOB2 is red LED output)

POP: Reading Internal Update Rate

Function

This command is used to read the internal update rate currently used for measurements and PVT process.
POS: Computed Position Data

Function
This command allows you to query the receiver for the last computed position.

Command Format
Syntax
PASHQ,POS[^cc]

Response Format
Syntax
$\text{PASHR,POS,d1,d2,m3,m4,c5,m6,c7,f8,f9,f10,f11,f12,f13,f14,f15,f16,d17[^cc]}$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>Current update rate, in Hz.</td>
<td>1, 2, 5, 10, 20, 50</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>00-FF</td>
</tr>
</tbody>
</table>

Example
PASHQ,POS^38
PASHR,POS,10^16

Relevant Set
PASHS,POP
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Flag describing position solution type:</td>
<td>0-3, 5, 9-13, 22, 23</td>
</tr>
<tr>
<td>d1 Flag describing position solution type:</td>
<td>0: Autonomous position</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1: RTCM code differential (or SBAS/BDS differential) (see NOTE 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2: RTK float (or RTX) (see NOTE 2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3: RTK fixed (or RTX) (see NOTE 2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5: Estimated (dead-reckoning) mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9: SBAS differential (see NOTE 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10: BeiDou Differential (see NOTE 3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12: RTK float (see NOTE 2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13: RTK fixed (see NOTE 2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22: RTK Float Dithered (see NOTE 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23: RTK Fixed, Dithered (see NOTE 4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Count of satellites used in position computation</td>
<td>0-26</td>
</tr>
<tr>
<td>m3</td>
<td>Current UTC time of position (hhmmss.ss)</td>
<td>000000.00-235959.99</td>
</tr>
<tr>
<td>m4</td>
<td>Latitude of position (ddmm.mmmmmmm)</td>
<td>0-90° 00-59.999999 minutes</td>
</tr>
<tr>
<td>c5</td>
<td>North (N) or South (S)</td>
<td>N, S</td>
</tr>
<tr>
<td>m6</td>
<td>Longitude of position (ddddmm.mmmmmmm)</td>
<td>0-180° 00-59.999999 minutes</td>
</tr>
<tr>
<td>c7</td>
<td>East (E) or West (W)</td>
<td>E, W</td>
</tr>
<tr>
<td>f8</td>
<td>Altitude above the WGS84 ellipsoid</td>
<td>±9999.000</td>
</tr>
<tr>
<td>f9</td>
<td>True Track/Course Over Ground, in degrees</td>
<td>0.0-359.9</td>
</tr>
<tr>
<td>f10</td>
<td>Speed Over Ground, in knots</td>
<td>0.0-999.999</td>
</tr>
<tr>
<td>f11</td>
<td>Vertical velocity in m/s</td>
<td>±999.999</td>
</tr>
<tr>
<td>f12</td>
<td>PDOP</td>
<td>0-99.9</td>
</tr>
<tr>
<td>f13</td>
<td>HDOP</td>
<td>0-99.9</td>
</tr>
<tr>
<td>f14</td>
<td>VDOP</td>
<td>0-99.9</td>
</tr>
<tr>
<td>f15</td>
<td>TDOP</td>
<td>0-99.9</td>
</tr>
<tr>
<td>d17</td>
<td>Base station ID (see NOTE 5)</td>
<td>0-4095</td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Example

```
$PASHR,POS,3,10,151858.00,4717.960848,N,00130.499487,W,82.972,,0.0,
0.0,-0.2,0.1,1.7,1.3,2500*38
```

NOTES

1. The reported mode for a position computed in SBAS Differential is “1” or “9”, depending on the last $PASHS,NPT command run.
2. The reported mode for a position computed in Trimble RTX is “1” or “10”, depending on the last $PASHS,NPT command run.

3. The reported mode for a position computed in BeiDou Differential is “2/3” or “12/13”, depending on the last $PASHS,NPT command run.

4. The reported mode for a position computed in Dithered RTK is “2/3” or “22/23”, depending on the last $PASHS,NPT command run.

5. When the board delivers a State Space Differential position, the base station ID field (d17) may take one of the following values:
 - 0120-0158 for conventional SBAS
 - 0183-0187 for QZSS L1 SAIF
 - 0100-0107 for RTX
 - 0119 for BeiDou Differential

Automatic Output of POS Messages

This is a reminder on how to output POS messages at regular intervals of time: Use the $PASHS,NME command with the syntax below:

$PASHS,NME,POS,<port_ID>,ON,<Rate>

For more details on the $PASHS,NME command, refer to the Set Command Library Chapter.

As an example, the command below will output POS messages on port A at a rate of 0.2 second:

$PASHS,NME,POS,A,ON,0.2

POS,REF: Base Position

Function

This command is used to read the base position entered manually. The coordinate system in which the position is expressed depends on the last $PASHS,PGS command issued. No position is returned if the base has not been set up yet when you make the request or the base is a moving one.

Command Format

Syntax

$PASHQ[,d0],POS,REF[*cc]
Response Format

Syntax

```
$PASHR[d0],POS,REF,m1,c2,m3,c4,f5*cc
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d0</td>
<td>Antenna ID</td>
<td>1-2</td>
</tr>
<tr>
<td>s1</td>
<td>Latitude, in degrees and minutes with 6 decimal places (ddmm.mmmmmm)</td>
<td>0-90</td>
</tr>
<tr>
<td>c2</td>
<td>North (N) or South (S)</td>
<td>N, S</td>
</tr>
<tr>
<td>m3</td>
<td>Longitude, in degrees and minutes with 6 decimal places (ddmm.mmmmmm)</td>
<td>0-180</td>
</tr>
<tr>
<td>c4</td>
<td>East (E) or West (W)</td>
<td>E, W</td>
</tr>
<tr>
<td>f5</td>
<td>Height, in meters</td>
<td>±0-99999.999</td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Examples

- `$PASHQ,POS,REF`
- `$PASHR,POS,REF,4717.959483,N,00130.500968,W,70.229*59`
- `$PASHQ,POS,REF`
- `$PASHR,POS,REF,,,,*69`

Related Commands

- `$PASHS,POS` (set command)

PPP: Reading the Current PPP Settings

Function

This command is used to read the current settings of the PPP service.

Command Format

Syntax

```
$PASHQ,PPP[*cc]
```

Response Format

Syntax

```
$PASHR,PPP,s1,SRC,s2*cc
```
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Selected PPP service:</td>
<td>OFF, RTX, TRS</td>
</tr>
<tr>
<td></td>
<td>• OFF: No PPP service</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• RTX: Trimble RTX</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• TRS: TERIAsat</td>
<td></td>
</tr>
<tr>
<td>s2</td>
<td>Selected channel to deliver corrections to PPP service:</td>
<td>AUT, LBN, IP, OFF</td>
</tr>
<tr>
<td></td>
<td>• AUT: Corrections are delivered by either L-band channel or receiver port</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• LBN: Corrections only come from the L-band channel.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• IP: Corrections only come from a port (serial, USB, Bluetooth, IP).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• OFF: No corrections are provided to the PPP service.</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>00-FF</td>
</tr>
</tbody>
</table>

Example

$PASHQ,PPP
$PASHR,PPP,RTX,SRC,AUT*1C

Relevant Set Command

$PASHS,PPP
$PASHS,PPP,SRC

PPS: PPS Settings

Function

This command is used to read the current settings (signal period, offset and valid edge) of the PPS signal.

Command Format

Syntax

$PASHQ,PPS[*cc]

Response Format

Syntax

$PASHR,PPS,f1,f2,c3*cc
PRT: Baud Rate Settings

Function
This command is used to read the current baud rate setting for any of the serial ports used in the receiver.

Command Format
Syntax
$PASHQ,PRT[c1][*cc]$

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>Port ID of queried port. If c1 is omitted, the returned baud rate setting is that of the port routing the command.</td>
<td>A, B, D</td>
<td>A, B, D</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td></td>
<td>00-FF</td>
</tr>
</tbody>
</table>

Response Format
Syntax
$PASHR,PRT,c1,d2*cc$

Example

$PASHQ,PPS$

$PASHR,PPS,1,500,R*5D$

Relevant Set Command

$PASHS,PPS$

Command Format Syntax

$PASHQ,PRT[,c1][*cc]$

- **Parameters**
 - **c1**: Port ID of queried port. If c1 is omitted, the returned baud rate setting is that of the port routing the command.
 - ***cc**: Optional checksum (00-FF)

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>f1</td>
<td>Period, in seconds (0= disabled)</td>
<td>0</td>
<td>0, 0.01, 0.02, 0.05,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1, 0.2, 0.5, 1, 2, 3, 4,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5, 6, 10, 12, 15, 20, 30,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 or 60</td>
</tr>
<tr>
<td>f2</td>
<td>Offset in milliseconds</td>
<td>0</td>
<td>±9999999</td>
</tr>
<tr>
<td>c3</td>
<td>Active edge:</td>
<td>R</td>
<td>R, F</td>
</tr>
<tr>
<td></td>
<td>• R: Rising</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• F: Falling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td></td>
<td>00-FF</td>
</tr>
</tbody>
</table>
Query Command Library

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>ID of port for which baud rate setting is returned.</td>
<td>A, B, D</td>
</tr>
<tr>
<td>d2</td>
<td>Baud rate code</td>
<td>0-12 (see table below)</td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>00-FF</td>
</tr>
</tbody>
</table>

Example

```plaintext
$PASHQ,PRT,A
$PASHQ,PRT,A,6*55
```

Related Commands

- $PASHS,PRT (set command)
- $PASHQ,CTS

PSP: Reading the Position of the Physical Reference Station Received

Function

This command queries the receiver for the position of the physical reference station received when this station is a VRS station.

Command Format

<table>
<thead>
<tr>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>$PASHQ,PSP[*cc]</td>
</tr>
</tbody>
</table>

Parameters

None

Response Format

<table>
<thead>
<tr>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>$PASHR,PSP,d1,d2,d3,d4,d5,m6,c7,m8,c9,f10,f11*cc</td>
</tr>
</tbody>
</table>

426
Query Command Library

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Differential processor number</td>
<td>0, 3</td>
</tr>
<tr>
<td>d2</td>
<td>Counter reporting changes to the PSP parameters. The counter is incremented by one every time the PSP message content changes. Counter rolls back to 0 after reaching value "15".</td>
<td>0, 15</td>
</tr>
<tr>
<td>d3</td>
<td>Reference station ID</td>
<td>0-4095</td>
</tr>
</tbody>
</table>
| d4 | Reference station type:
• 0: Physical base station
• 1: Virtual base station |
| d5 | Position tagging:
• 0: ARP
• 1: L1 phase center | 0, 1 |
| m6 | Latitude in degrees, decimal minutes (ddmm.mm.mmmmmm). | 0, 90 |
| c7 | North (N) or South (S) | N, S |
| m8 | Longitude in degrees, decimal minutes (ddmm.mm.mmmmmm). | 0-180 |
| c9 | East (E) or West (W) | E, W |
| f10 | Height, in meters | 30-9999.9999 |
| f11 | Antenna height, in meters | 0-6.5535 |
| *cc | Checksum | *00-*FF |

Examples

$PASHQ,PSP
$PASHR,PSP,0,2,311,0,0,4717.959483,N,00130.500968,W,70.229,0.000*61

Related Commands

$PASHS,NME
$PASHQ,RSP

PTT: PPS Time Tag

Function

This command asks for the PPS time tag message to be output.

Command Format

Syntax

$PASHQ,PTT[*cc]

Response Format

Syntax

$PASHR,PTT,d1,m2*cc
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
</table>
| d1 | Day of week:
• 1: Sunday
• 7: Saturday | 1-7 |
| m2 | GPS time tag in hours, minutes, seconds and fraction of a second (9 decimal places) | 0-23:59:59.999999999 |
| *cc | Checksum | *00-*FF |

Example

Enabling the receiver to output the PTT message on port A:

$PASHS,NME,PTT,A,ON

Generating the PPS time tag message on port A:

$PASHQ,PTT,A
$PASHR,PTT,6,20:41:02.0000000*2D

Comments

• The response to this command will be sent out once, right after the next PPS pulse is generated.
• The response contains the GPS time at which the PPS pulse was sent, including the offset if an offset was set when the PPS pulse was enabled.
• Being set to a periodical output by the $PASHS,NME,PTT command, this message is independent of the NMEA period. It is only linked to the PPS period.

Automatic Output of PTT Messages

This is a reminder on how to output PTT messages at regular intervals of time: Use the $PASHS,NME command with the syntax below:

$PASHS,NME,PTT,<port_ID>,ON,<Rate>

For more details on the $PASHS,NME command, refer to the Set Command Library Chapter.

As an example, the command below will output PTT messages on port A at a rate of 2 seconds:

$PASHS,NME,GSA,A,ON,2
QZS: QZSS Tracking Status

Function
This command is used to read the current status of QZSS tracking.

Command Format

Syntax

$PASHQ,QZS[*cc]

Parameters
None.

Response Format

Syntax

$PASHR,QZS,s1,USE,n(c2)*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>QZSS tracking status:</td>
<td>ON or OFF</td>
</tr>
<tr>
<td></td>
<td>• ON: QZSS satellites tracked and used</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• OFF: QZSS satellites not tracked</td>
<td></td>
</tr>
<tr>
<td>s1</td>
<td>QZSS tracking status:</td>
<td>ON, OFF</td>
</tr>
<tr>
<td></td>
<td>• ON: Currently tracking and using QZSS satellites</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• OFF: Not tracking QZSS satellites</td>
<td></td>
</tr>
<tr>
<td>n(c2)</td>
<td>Provides tracking status of each QZSS satellite:</td>
<td>Y, N</td>
</tr>
<tr>
<td></td>
<td>• Y: Tracking enabled for this satellite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• N: Tracking disabled for this satellite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>This status is provided n times, where n is the number of satellites in the QZSS constellation. See also the $PASHS,<GNS>,USE command.</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>"00-FF"</td>
</tr>
</tbody>
</table>

Example

Reading QZSS tracking:

$PASHQ,QZS
$PASHR,QZS,ON,USE,YYYYY*1B

Relevant Set Command

$PASHS,QZS

429
RCA: Reading the Received CMR Type 2 Attribute

Function
This command queries the receiver for the received CMR Type 2 attribute.

Command Format Syntax
\$PASHQ,RCA[^cc]

Parameters
None

Response Format Syntax
\$PASHR,RCA,d1,d2,d3,s4,s5,s6,s7[^cc]

Parameters
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Differential processor number</td>
<td>0, 3</td>
</tr>
<tr>
<td>d2</td>
<td>Counter reporting changes to the RCA parameters. The counter is incremented by one every time the RCA message content changes. Counter rolls back to 0 after reaching value “15”.</td>
<td>0, 15</td>
</tr>
<tr>
<td>d3</td>
<td>Base ID</td>
<td>0-4095</td>
</tr>
<tr>
<td>s4</td>
<td>Physical station name</td>
<td></td>
</tr>
<tr>
<td>s5</td>
<td>Short station ID</td>
<td></td>
</tr>
<tr>
<td>s6</td>
<td>COGO code</td>
<td></td>
</tr>
<tr>
<td>s7</td>
<td>Long station ID/Number</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Examples
\$PASHQ,RCA
\$PASHR,RCS,Y,0,G1235A13.25,1,1,0,P1*2A

Related Commands
\$PASHS,NME

RCP,OWN: Receiver Name

Function
This command is used to read the name assigned to the receiver.
Command Format Syntax
$PASHQ,RCP,OWN[*cc]

Parameters
None.

Response format Syntax
$PASHR,RCP,OWN,s1*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Receiver name</td>
<td>TRIMBLE MB-TWO</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Example
$PASHQ,RCP,OWN*4C
$PASHR,RCP,OWN,TRIMBLE MB-TWO*64

RCP,REF: Reference Receiver Name

Function
This command is used to query the receiver for the name assigned locally to the base receiver from which the differential stream is received.

Command Format Syntax
$PASHQ,RCP,REF[*cc]

Parameters
None.

Response format Syntax
$PASHR,RCP,REF,s1*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Reference receiver name</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Example
$PASHQ,RCP,REF*4B
$PASHR,RCP,REF,SPECTRA,0*26

Related Commands
$PASHS,RCP,REF (set command)

RCS: Reading the Recording Status

Function
This command queries the receiver for its current data recording status.

Command Format
Syntax
$PASHQ,RCS[^cc]

Parameters
None

Response Format
Syntax
$PASHR,RCS,c1,d2,s3,f4,d5,d6,s7^cc
Query Command Library

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
</table>
| **c1** Recording status: | • Y: Data recording in progress; receiver will keep on recording data after a power cycle.
 • N: No data recording in progress; after a power cycle, no recording will start either.
 • S: No data recording in progress, but receiver will start recording data after a power cycle.
 • R: Data recording in progress, but receiver will stop recording data after a power cycle. | Y, N, S, R |
| **d2** Memory where data file is recorded: | • 0: Internal memory
 • 2: USB memory | 0, 2 |
| **s3** Data filename | 255 char. max. |
| **f4** Recording rate, in seconds: | 0.05-960 |
| **d5** Occupation type: | • 0: Static
 • 1: Quasi-static
 • 2: Dynamic | 0-2 |
| **d6** Occupation state: | • 0: In progress
 • 1: No occupation | 0-1 |
| **s7** Occupation name | 255 char. max. |
| ***cc** Checksum | *00-*FF |

Examples

Data recording in progress, file G1235A13.25 being written to internal memory, recording rate: 1 second, “P1” occupation in progress:

```plaintext
$PASHQ,RCS
$PASHR,RCS,Y,0,G1235A13.25,1,1,0,P1*2A
```

No data recording in progress:

```plaintext
$PASHQ,RCS
$PASHR,RCS,N,0,,0.1,2,1,*5F
```

Related Commands
$PASHS,NME

RDP,CHT: Radio Channel Table

Function
This command is used to read the radio channel settings.
Query Command Library

Command Format

Syntax

$PASHQ,RDP,CHT,c1[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>Serial port used to communicate with the radio</td>
<td>A, B, D</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Response Format

Syntax

$PASHR,RDP,CHT,s1,d2,n,d3,f4,f5)*cc
(Where n=d2)
Or, if the channel table does not exist: $PASHR,RDP,CHT,s1,0

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Radio Model:</td>
<td>PDL, ADL, XDL, NONE</td>
</tr>
<tr>
<td></td>
<td>• NONE: No radio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• PDL: Pacific Crest</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– PDL HPB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– PDL LPB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ADL: Pacific Crest</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– ADL Vantage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– ADL Vantage Pro</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• XDL: Pacific Crest</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– XDL Rover</td>
<td></td>
</tr>
<tr>
<td>d2</td>
<td>Total number of available channels</td>
<td>0-16 (PDL)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0-32 (ADL or XDL)</td>
</tr>
<tr>
<td>d3</td>
<td>Channel index</td>
<td>0-15 (PDL)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-32 (ADL or XDL)</td>
</tr>
<tr>
<td>f4</td>
<td>Receive frequency</td>
<td>410-470 MHz</td>
</tr>
<tr>
<td>f5</td>
<td>Transmit frequency</td>
<td>410-470 MHz</td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Comments

The number of (d3,f4,f5) data sets (n) in the response line is equal to the number of channels (d2).

Examples

$PASHQ,RDP,CHT,D
$PASHR,RDP,CHT,PDL,7,0,446.7750,446.7750,1,444.1000,444.1000,2,445.1000,445.1000,3,446.1000,446.1000,4,447.1000,447.1000,5,448.1000,448.1000,6,449.1000,449.1000*35

$PASHQ,RDP,CHT,A
$PASHR,RDP,CHT,NONE,0*7B
Related Commands

$PASHS,RDP,TYP

$PASHQ,RDP, PAR

RDP,PAR: Radio Parameters

Function
This command allows you to query the radio settings relevant to the port used to communicate with the radio.

Command Format

Syntax

$PASHQ,RDP,PAR,c1[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>Serial port used to communicate with the radio</td>
<td>A, B, D</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Response Format

Syntax

$PASHR,RDP,PAR,c1,s2,s3,c4,c5,c6,c7,s8,s9,c10,c11,s12,s13,,c15,c16,s17,s18,s19,d20,d21,s22,d23,d24*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>The port ID you specified in the command is replicated in this field</td>
<td>A, B, D</td>
</tr>
<tr>
<td>s2</td>
<td>Radio type: • UNKNOWN: Auto-detection • NONE: No radio • PDL: Pacific Crest – PDL HPB – PDL LPB • ADL: Pacific Crest • ADL Vantage • ADL Vantage Pro • XDL: Pacific Crest • XDL Rover</td>
<td>UNKNOWN, PDL, ADL, XDL, NONE</td>
</tr>
<tr>
<td>s3</td>
<td>Radio state</td>
<td>ON, OFF</td>
</tr>
<tr>
<td>c4</td>
<td>Channel number</td>
<td>0-15 (PDL) 1-32 (ADL, XDL))</td>
</tr>
<tr>
<td>s5</td>
<td>Power management • AUT: Automatic • MAN: Manual</td>
<td>AUT, MAN</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
<td>Range</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>c6</td>
<td>Protocol used:</td>
<td>0-7</td>
</tr>
<tr>
<td></td>
<td>PDL:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 0: Transparent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1: TRIMTALK</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2: DSNP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ADL, XDL:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 0: Transparent (w EOT time out)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1: TRIMTALK 450S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2: Not used</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 3: SATEL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 4: TrimMarkII/IIe</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 5: TT450S (HW)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 6: TRIMMARK3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 7: Transparent FST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 8: U-Link</td>
<td></td>
</tr>
<tr>
<td>c7</td>
<td>Air link speed</td>
<td>4800, 8000, 9600, 16000, 19200</td>
</tr>
<tr>
<td>s8</td>
<td>Radio sensitivity</td>
<td>LOW, MED, HIG, OFF</td>
</tr>
<tr>
<td>f9</td>
<td>Receive frequency, in MHz</td>
<td>410-470</td>
</tr>
<tr>
<td>f10</td>
<td>Transmit frequency, in MHz</td>
<td>410-470</td>
</tr>
<tr>
<td>c11</td>
<td>Channel spacing, in kHz</td>
<td>12.5, 25</td>
</tr>
<tr>
<td>s12</td>
<td>RF band, in MHz</td>
<td>410-430, 430-450, 450-470, 430-473</td>
</tr>
<tr>
<td>s13</td>
<td>Firmware version</td>
<td></td>
</tr>
<tr>
<td>f14</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>c15</td>
<td>Scrambler status</td>
<td>0, 1</td>
</tr>
<tr>
<td></td>
<td>• 0: Off</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1: On</td>
<td></td>
</tr>
<tr>
<td>c16</td>
<td>Forward Error Correction status:</td>
<td>0, 1</td>
</tr>
<tr>
<td></td>
<td>• 0: FEC Off</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1: Hamming FEC On</td>
<td></td>
</tr>
<tr>
<td>s17</td>
<td>RF output power:</td>
<td>100 or 500 mW, 1, 2 or 4 W</td>
</tr>
<tr>
<td></td>
<td>• ADL Vantage: 100 or 500 mW, 1, 2 or 4 W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ADL Vantage Pro: 2 to 35 W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• XDL: 500 mW or 2 W</td>
<td></td>
</tr>
<tr>
<td>s18</td>
<td>Maximum output power</td>
<td>100 or 500 mW, 1, 2, 4 or 35 W</td>
</tr>
<tr>
<td>s19</td>
<td>Modulation format</td>
<td>4PSK, QPSK</td>
</tr>
<tr>
<td>d20</td>
<td>Model ID for ADL radios:</td>
<td>0, 2, 3, 4</td>
</tr>
<tr>
<td></td>
<td>• 0: ADL RXO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2: ADL Vantage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 3: ADL Vantage Pro</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 4: XDL (XDL Micro)</td>
<td></td>
</tr>
</tbody>
</table>
If an internal PDL radio receiver is used:

$PASHQ,RDP,PAR,D
$PASHR,RDP,PAR,D,XDL,ON,4,AUT,2,4800,MED,447.1000,447.1000,25.0,4,30-450,V02.53,,0,0,500mW,GMSK,4,0,OFF,0,0*7A

Comments
The command will be NAKed if the receiver has not been told on which port the radio is connected. Defining the port may be done using command $PASHS,RDP,TYP.

Related Commands
$PASHS,RDP,PAR
$PASHS,RDP,TYP
$PASHS,RDP,PWR
RDP,PWR: Reading Radio Type Used and Radiated Power

Function
This command queries the receiver for the radio connected to the specified port.
The set of returned data is called “power table” describing the type of radio used, the number of channels and the radiated power.
If there’s no power table existing for the specified port, the response will be:
$PASHR,RDP,PWR,s1,0

Command Format Syntax
$PASHQ,RDP,PWR,c1[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>Port for which you want the radio power table.</td>
<td>A, B, D</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00~FF</td>
</tr>
</tbody>
</table>

Response Format Syntax
$PASHR,RDP,PWR,s1,d2,n(d3,f4)*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Radio type:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• NONE: No radio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ADL: ADL Vantage or ADL Vantage Pro (Port A, B or D)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• XDL: XDL Rover</td>
<td></td>
</tr>
<tr>
<td>d2</td>
<td>Total number of available channels</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n designates the number of (d3, f4) pairs returned in the response; n = d2</td>
<td>n = d2</td>
</tr>
<tr>
<td>f4</td>
<td>Power, in watts</td>
<td>0.1-35</td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>*00~FF</td>
</tr>
</tbody>
</table>

Examples
Reading radio power table for port A:
$PASHQ,RDP,PWR,A
$PASHR,RDP,PWR,ADL,5,0,2,1,6,2,16,3,25,4,35*35
$PASHQ,RDP,PWR,A

438
$PASHR,RDP,PWR,NONE,0*7B

Related Commands

$PASHS,RDP,TYP
$PASHS,RDP,PAR

RDP,TYP: Radio Type Used

Function
This command is used to query the type of radio used on the specified port.

Command Format

Syntax

$PASHQ,RDP,TYP,c1[^cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>Serial port used to communicate with the radio</td>
<td>A, B, D</td>
</tr>
<tr>
<td>^cc</td>
<td>Optional checksum</td>
<td>00-FF</td>
</tr>
</tbody>
</table>

Response Format

Syntax

$PASHR,RDP,TYP,c1,s2[^cc]
Query Command Library

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>The port ID you specified in the command is replicated in this field</td>
<td>A, B, D</td>
</tr>
</tbody>
</table>
| s2 | Radio type:
- NONE: No radio
- AUTO: Auto-detection
- PDL: Pacific Crest
 - PDL HPB
 - PDL LPB
- ADL: Pacific Crest
 - ADL Vantage
 - ADL Vantage Pro
- XDL: Pacific Crest
 - XDL Rover | PDL, ADL, XDL, NONE, AUTO |

*cc | Checksum | *00-*FF |

Example

$PASHQ,RDP,TYP,A
$PASHR,RDP,TYP,A,ADL*44

$PASHQ,RDP,TYP,D
$PASHR,RDP,TYP,D,XDL*5F

Related Commands

$PASHS,RDP,TYP (set command)

REC: Raw Data Recording Status

Function

This command allows you to read the current raw data recording status.

Command Format

Syntax

$PASHQ,REC[*cc]

Response Format

Syntax

$PASHR,REC,c*cc

440
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
</table>
| c | Control character:
 • Y: Yes. Data recording in progress. Receiver will start recording data automatically when you next turn it on.
 • N: No. No data recording in progress. Receiver will not start recording data automatically when you next turn it on.
 • S: Stop. No data recording in progress but the receiver will start recording data automatically when you next turn it on.
 • R: Record. Data recording in progress but the receiver will not start recording data automatically when you next turn it on. | Y, N, S, R |

*cc Checksum *00-*FF

Example

$PASHQ,REC
$PASHR,REC,N*42

Relevant Set Command

$PASHS,REC

RFM: Ring File Memory

Function

This command returns the status of the ring file memory.

Command Format Syntax

$PASHQ,RFM[*cc]

Parameters

None.

Response Format Syntax

$PASHR,RFM,s1,d2,d3*cc
Query Command Library

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
</table>
| s1 | Status of the ring file memory:
| | • Y: Use of ring file memory enabled: The oldest files will be deleted automatically when the threshold of free memory space left is reached.
| | • N: Use of ring file memory disabled: The logging of raw data files will stop when there is no free space left in the memory used. | Y, N |
| d2 | Current value of free memory space left (in MBytes) for which the use of the ring file memory will come into play. | 1-1024 |
| d3 | Not significant | |
| *cc | Checksum | *00-*FF |

Example

$PASHQ,RFM
$PASHR,RFM,Y,15,160*6B

Relevant Set Command

$PASHS,RFM

RID: Receiver Identification

Function

This command allows you to read the receiver’s identification parameters.

Command Format

Syntax

$PASHQ,RID[*cc]

Parameters

None.

Response Format

Syntax

$PASHR,RID,s1,s2,s3,s4,s5,s6,s7*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Receiver name</td>
<td>MB2</td>
</tr>
</tbody>
</table>
| s2 | Firmware version:
| | • Official version: x.y
| | • Non-official version: x.y.z | “d.d” or “d.d.d” |
| s3 | Version date | dd/mm/yyyy |
| s4 | Expiration date (end of warranty period) | dd/mm/yyyy |
Example

$PASHQ,RID*28
$PASHQ,VERSION
$PASHQ,ALR
$PASHQ,LOG

Comments
With a non-official version, the receiver works normally during the 90 days following the reported version date. After this time has elapsed, only the following commands are accepted by the receiver:

- $PASHQ,RID
- $PASHQ,VERSION
- $PASHQ,ALR
- $PASHQ,LOG

Related Commands

$PASHQ,VERSION

RMC: Recommended Minimum Specific GNSS Data

Function
This command is used to output an RMC message containing the last computed position as well as navigation-related data.

Command Format

Syntax

$PASHQ,RMC[*cc]

Response Format

Syntax

$GPRMC,m1,c2,m3,c4,m5,c6,f7,f8,d9,f10,c11,c12*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>m1</td>
<td>Current UTC time of position (hhmmss.ss)</td>
<td>000000.00-235959.99</td>
</tr>
</tbody>
</table>
Example

$PASHQ,RMC
$GPRMC,160324.50,A,4717.959275,N,00130.500805,W,0.0,0.0,250208,1.9,W,A*3D

Related Commands

$PASHS,NME

Automatic Output of RMC Messages

This is a reminder on how to output RMC messages at regular intervals of time: Use the $PASHS,NME command with the syntax below:

$PASHS,NME,RMC,<port_ID>,ON,<Rate>

For more details on the $PASHS,NME command, refer to the Set Command Library Chapter.

As an example, the command below will output RMC messages on port A at a rate of 0.5 second:

$PASHS,NME,RMC,A,ON,0.5
ROT: Rate of Turn

Function
This command allows you to output the current value of rate of turn.

Command Format
Syntax
\[$PASHQ,\text{ROT}[^cc] \]

Response Format
Syntax
\[$--\text{ROT},f,c[^cc] \]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>Rate of turn, in degrees/minute.</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Rate of turn status:</td>
<td>A, V</td>
</tr>
<tr>
<td></td>
<td>• A: Data valid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• V: Data invalid</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Example

\[$PASHQ,\text{ROT} \]
\[$GNROT,123.56,A*61 \]

Related Command
\[$PASHS,NME \]

Automatic Output of ROT Messages
This is a reminder on how to output ROT messages at regular intervals of time: Use the $PASHS,NME command with the syntax below:

\[$PASHS,NME,\text{ROT},<\text{port_ID}>,\text{ON},<\text{Rate}> \]

For more details on the $PASHS,NME command, refer to the *Set Command Library* Chapter.

As an example, the command below will output ROT messages on port A at a rate of 0.5 second:

\[$PASHS,NME,\text{ROT},A,\text{ON},0.5 \]
RSP: Reading the Position of the Reference Station Received

Function
This command queries the receiver for the position of the reference station received.

Command Format Syntax
$PASHQ,RSP[*cc]

Parameters
None

Response Format Syntax
$PASHR,RSP,d1,d2,d3,d4,d5,m6,c7,m8,c9,f10,f11*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Differential processor number</td>
<td>0, 3</td>
</tr>
<tr>
<td>d2</td>
<td>Counter reporting changes to the RSP parameters. The counter is incremented by one every time the PSP message content changes. Counter rolls back to 0 after reaching value "15".</td>
<td>0, 15</td>
</tr>
<tr>
<td>d3</td>
<td>Reference station ID</td>
<td>0-4095</td>
</tr>
</tbody>
</table>
| d4 | Reference station type:
• 0: Physical base station
• 1: Virtual base station | |
| d5 | Position tagging:
• 0: ARP
• 1: L1 phase center | 0, 1 |
| m6 | Latitude in degrees, decimal minutes (ddmm.mmmmmm). | 0, 90 |
| c7 | North (N) or South (S) | N, S |
| m8 | Longitude in degrees, decimal minutes (dddm.mmmmmm). | 0-180 |
| c9 | East (E) or West (W) | E, W |
| f10 | Height, in meters | -93-9999.9999 |
| f11 | Antenna height, in meters | 0-6.5535 |
| *cc | Checksum | *00-*FF |

Examples
$PASHQ,RSP
$PASHR,RSP,0,2,811,1,0,4717.959483,N,00130.500968,W,70.229,0.000*61

Related Commands
$PASHS,NME
$PASHQ,PSP
RTK: Reading RTK Processing Status

Function
This command is used to read the status of the currently defined RTK processing.

Command Format Syntax
$PASHQ,RTK[{*cc}]

Response Format Syntax
$PASHR,d0,RTK,s1,d2,d3,d4,STI,s5{*cc}

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d0</td>
<td>Sensor ID</td>
<td>1, 2</td>
</tr>
<tr>
<td>s1</td>
<td>RTK processing status (ON/OFF)</td>
<td>ON, OFF</td>
</tr>
<tr>
<td>d2</td>
<td>Number of first baseline used in the RTK processing.</td>
<td>1-3</td>
</tr>
<tr>
<td>d3</td>
<td>Number of second baseline used in the RTK processing.</td>
<td>1-3</td>
</tr>
<tr>
<td>d4</td>
<td>Number of third baseline used in the RTK processing.</td>
<td>1-3</td>
</tr>
<tr>
<td>s5</td>
<td>Desired station ID (as entered using command $PASHS,RTK,STI)</td>
<td>AUT, 0-4095</td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Example

$PASHQ,RTK$
$PASHR,1,RTK,ON,1,3,2,AUT*79$

Comment

In SOLO mode, the response is in the form:

$PASHR,1,RTK$

In DUO mode, the response consists of two lines, and is in the form:

$PASHR,1,RTK$

$PASHR,2,RTK$
RTX: Reading RTX Processing Status

Function
This command is used to read the status of the currently defined RTX processing.

Command Format
Syntax
$PASHQ,RTX[*cc]

Response Format
Syntax
$PASHR,RTX,SRC,s1,MOD,s2,DTM,s3,s4,s5,s6,s7,RAM,s8*cc
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>RTX corrections source:</td>
<td>AUT, LBN, IP, OFF</td>
</tr>
<tr>
<td></td>
<td>• AUT: Corrections data may be received via either L-band or one of the board's communication ports.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• LBN: RTX engine forced to use only the corrections data received via the L-band channel only.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• IP: RTX engine forced to use only the corrections data received via its ports only.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• OFF: RTX processing inactive</td>
<td></td>
</tr>
<tr>
<td>s2</td>
<td>RTX corrections service used:</td>
<td>OFF, CPT, RPT</td>
</tr>
<tr>
<td></td>
<td>• OFF: No RTX position computation, only subscribing data (BSM) are decoded.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• CPT: CenterPoint RTX.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• RPT: RangePoint RTX.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• VPT: ViewPoint RTX.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• FPT: FieldPoint RTX.</td>
<td></td>
</tr>
<tr>
<td>s3</td>
<td>Indicates whether a datum transformation is used (ON) or not (OFF).</td>
<td>ON, OFF</td>
</tr>
<tr>
<td>s4</td>
<td>Name of datum used; See $PASHS,RTX,DTM for datum name list.</td>
<td></td>
</tr>
<tr>
<td>s5</td>
<td>Name of tectonic plate used; See $PASHS,RTX,DTM for plate name list.</td>
<td></td>
</tr>
<tr>
<td>s6</td>
<td>If s4=AUTO, firmware-set datum name, depending on position computed, otherwise see s6=s4.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>s6 empty: RTX not used.</td>
<td></td>
</tr>
<tr>
<td>s7</td>
<td>If s5=AUTO, firmware-set tectonic plate name, depending on position computed, otherwise see s7=s5.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>s7 empty: RTX not used.</td>
<td></td>
</tr>
<tr>
<td>s8</td>
<td>RAM (OFF)</td>
<td>OFF</td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>00-FF</td>
</tr>
</tbody>
</table>

Example

$PASHQ,RTX
$PASHR,RTX,SRC,AUT,MOD,CPT,DTM,ON,ETRS89,EURA,ETRS89,EURA,OFF*36

Related Commands

$PASHS,RTX,SRC
$PASHS,RTX,MOD
SAT: Satellites Status (Obsolete Command)

With the increasing number of available constellations, it has become more and more questionable to maintain a single message that would show, in a compact and clear form, all the satellites tracked by the board.

For this reason, and although the board can still respond to the $PASHQ,SAT command, it was decided not to maintain this command and to suggest users to prefer the use of the following commands, each of them being specific to a constellation:

- $PASHQ,SGP: GPS satellites
- $PASHQ,SGL: GLONASS satellites
- $PASHQ,SGA: Galileo satellites
- $PASHQ,SSB: SBAS satellites
- $PASHQ,SQZ: QZSS satellites
- $PASHQ,SBD: BeiDou satellites

Note that because the SAT message has been made obsolete for quite some time, it does no longer give an accurate report of all the satellites tracked by the board. Its description is however given below, again with no guarantee that the returned information is accurate.

Command Format
Syntax
$PASHQ,SAT[*cc]

Response Format
Syntax
$PASHR,SAT,d1,n(d2,d3,d4,f5,c6)*cc
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Number of satellites locked</td>
<td>1-57</td>
</tr>
<tr>
<td>d2</td>
<td>SV PRN number</td>
<td>1-32: GPS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33-51: SBAS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>65-88: GLONASS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>97-120: GALILEO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>193-197: QZSS</td>
</tr>
<tr>
<td>d3</td>
<td>SV azimuth, in degrees</td>
<td>0-359</td>
</tr>
<tr>
<td>d4</td>
<td>SV elevation angle, in degrees</td>
<td>0-90</td>
</tr>
<tr>
<td>f5</td>
<td>SV signal-noise ratio, in dBHz</td>
<td>30.0-60.0</td>
</tr>
<tr>
<td>c6</td>
<td>SV used in computation or not</td>
<td>U: SV used</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-: SV not used</td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>00-FF</td>
</tr>
</tbody>
</table>

The GPS PRN number is d2.
The EGNOS PRN number is d2 plus 87.
The GLONASS slot number is d2 minus 64.
The GALILEO PRN number is d2 minus 96.
The QZSS PRN number is d2 minus 192.

Example

$PASHQ,SAT
$PASHR,SAT,13,20,092,32,44.0,U,13,206,78,50.0,U,23,096,55,48.0,U,33,19
8,34,44.0,-17,219,13,42.0,U,25,152,34,38.0,U,04,276,65,50.0,U,02,308,31,
48.0,U,77,052,37,48.0,U,84,294,33,48.0,U,83,234,23,48.0,U,78,124,42,46.0,
U,98,034,65,48.0,U*35

See also

$PASHS,NME

Automatic Output of SAT Messages

Use the $PASHS,NME command with the syntax below:

$PASHS,NME,SAT,<port_ID>,ON,<Rate>

For more details on the $PASHS,NME command, refer to the Set Command Library Chapter.
As an example, the command below will output SAT messages on port A at a rate of 60 seconds:

$PASHS,NME,SAT,A,ON,60
SBA: SBAS Tracking Status

Function
This command is used to query the SBAS tracking status.

Command Format Syntax
$PASHQ,SBA[*cc]

Response Format Syntax
$PASHR,SBA,s1,USE,n(c2)*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>SBAS tracking status:</td>
<td>ON, OFF</td>
</tr>
<tr>
<td></td>
<td>• ON: Currently tracking and using SBAS satellites</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• OFF: Not tracking SBAS satellites</td>
<td></td>
</tr>
<tr>
<td>n(c2)</td>
<td>Provides tracking status of each SBAS satellite:</td>
<td>Y, N</td>
</tr>
<tr>
<td></td>
<td>• Y: Tracking enabled for this satellite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• N: Tracking disabled for this satellite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>This status is provided n times, where n is the number of satellites in the SBAS constellation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See also the $PASHS,<GNS>,USE command.</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Example
$PASHQ,SBA
$PASHR,SBA,ON,USE,YY*4A

Related Commands
$PASHS,SBA (set command)

SBD: BeiDou Satellites Status

Function
This command is used to see which BeiDou satellites the receiver is currently tracking.

Command Format Syntax
$PASHQ,SBD[*cc]
Query Command Library

Parameters
None

Response Format Syntax
$PASHR,SBD,d1,n(d2,d3,d4,f5,f6,f7,c8,c9)*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Number of visible satellites</td>
<td>0-36</td>
</tr>
<tr>
<td>s2</td>
<td>Satellite PRN number</td>
<td>1-36</td>
</tr>
<tr>
<td>d3</td>
<td>Satellite azimuth, in degrees</td>
<td>0-359</td>
</tr>
<tr>
<td>d4</td>
<td>Satellite elevation, in degrees</td>
<td>0-90</td>
</tr>
<tr>
<td>f5</td>
<td>Satellite B1 signal/noise in dB Hz</td>
<td>0.0-60.0</td>
</tr>
<tr>
<td>f6</td>
<td>Satellite B2 signal/noise in dB Hz</td>
<td>0.0-60.0</td>
</tr>
<tr>
<td>f7</td>
<td>(empty)</td>
<td></td>
</tr>
<tr>
<td>c8</td>
<td>Satellite usage status</td>
<td>See NOTE below</td>
</tr>
<tr>
<td>c9</td>
<td>Satellite correcting status</td>
<td>See NOTE below</td>
</tr>
</tbody>
</table>

f5-17 are empty if the corresponding signal is not tracked.

NOTE: For more information on satellite usage status and satellite correcting status, refer to Satellite Status on page 516.

Example
$PASHQ,SBD
$PASHR,SBD,13,20,092,32,44.0,35.0,,2,4,...

Related Commands
$PASHS,NME

SGA: GALILEO Satellites Status

Function
This command is used to read the status of each GALILEO satellite received.

Command Format Syntax
$PASHQ,SGA[*cc]

Response Format Syntax
$PASHR,SGA,d1,n(d2,d3,d4,f5,f6,f7,c8,c9)*cc

453
Query Command Library

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Number of satellites locked</td>
<td>0-36</td>
</tr>
<tr>
<td>d2</td>
<td>SV PRN number</td>
<td>1-36</td>
</tr>
<tr>
<td>d3</td>
<td>SV azimuth in degrees</td>
<td>0-359</td>
</tr>
<tr>
<td>d4</td>
<td>SV elevation angle in degrees</td>
<td>0-90</td>
</tr>
<tr>
<td>f5</td>
<td>SV E1 signal/noise in dBHz</td>
<td>0.0-80.0</td>
</tr>
<tr>
<td>f6</td>
<td>SV E5b signal/noise in dBHz</td>
<td>0.0-80.0</td>
</tr>
<tr>
<td>f7</td>
<td>SV E5a signal/noise in dBHz</td>
<td>0.0-80.0</td>
</tr>
<tr>
<td>c8</td>
<td>Satellite usage status (see NOTE below)</td>
<td></td>
</tr>
<tr>
<td>c9</td>
<td>Satellite correcting status (see NOTE below)</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>00-FF</td>
</tr>
</tbody>
</table>

Fields f5 to f7 are empty is the corresponding signal is not tracked.

NOTE: For more information on satellite usage status and satellite correcting status, refer to *Satellite Status on page 516.*

Example

```
$PASHQ,SGA
$PASHR,SGA,5,12,303,22,40,4.387,?.N,18,.,47.7,44.1,?.N,19,199,21,39.8,37.8,?.N,20,.,42.1,?,N,26,122,49,48.4,45.8,?.N*6C
```

Related Commands

$PASHS,NME

Automatic Output of SGA Messages

This is a reminder on how to output SGA messages at regular intervals of time: Use the $PASHS,NME command with the syntax below:

```
$PASHS,NME,SGA,<port_ID>,ON,<Rate>
```

For more details on the $PASHS,NME command, refer to the *Set Command Library* Chapter.

As an example, the command below will output SGA messages on port A at a rate of 10 seconds:

```
$PASHS,NME,SGA,A,ON,10
```

SGL: GLONASS Satellites Status

Function This command is used to read the status of each GLONASS satellite received.
Command Format Syntax
$PASHQ,SGL[^cc]

Response Format Syntax
$PASHR,SGL,d1,n(d2,d3,d4,f5,f6,.,c8,c9)^cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Number of visible satellites</td>
<td>0-24</td>
</tr>
<tr>
<td>d2</td>
<td>SV PRN number</td>
<td>1-24</td>
</tr>
<tr>
<td>d3</td>
<td>SV azimuth in degrees</td>
<td>0-359</td>
</tr>
<tr>
<td>d4</td>
<td>SV elevation angle in degrees</td>
<td>0-90</td>
</tr>
<tr>
<td>f5</td>
<td>SV L1 signal/noise in dB.Hz</td>
<td>0.0-60.0</td>
</tr>
<tr>
<td>f6</td>
<td>SV L2 signal/noise in dB.Hz</td>
<td>0.0-60.0</td>
</tr>
<tr>
<td>f7</td>
<td>Empty field</td>
<td></td>
</tr>
<tr>
<td>d8</td>
<td>Satellite usage status (see NOTE below)</td>
<td></td>
</tr>
<tr>
<td>d9</td>
<td>Satellite correcting status (see NOTE below)</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Fields f5 to f7 are empty is the corresponding signal is not tracked.

NOTE: For more information on satellite usage status and satellite correcting status, refer to Satellite Status on page 516.

Example $PASHQ,SGL
$PASHR,SGL,13,20,092,32,44.0,35.0,,2,4,...

Related Commands $PASHS,NME

Automatic Output of SGL Messages
This is a reminder on how to output SGL messages at regular intervals of time: Use the $PASHS,NME command with the syntax below:
$PASHS,NME,SGL,<port_ID>,ON,<Rate>

For more details on the $PASHS,NME command, refer to the Set Command Library Chapter.
As an example, the command below will output SGL messages on port A at a rate of 10 seconds:
$PASHS,NME,SGL,A,ON,10
Query Command Library

SGP: GPS Satellites Status

Function
This command is used to read the status of each GPS satellite received.

Command Format
Syntax
$PASHQ,SGP[*cc]$

Response Format
Syntax
$PASHR,SGP,d1,n(d2,d3,d4,f5,f6,f7,c8,c9)*cc$

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Number of visible satellites</td>
<td>0-63</td>
</tr>
<tr>
<td>d2</td>
<td>SV PRN number</td>
<td>1-63</td>
</tr>
<tr>
<td>d3</td>
<td>SV azimuth in degrees</td>
<td>0-359</td>
</tr>
<tr>
<td>d4</td>
<td>SV elevation angle in degrees</td>
<td>0-90</td>
</tr>
<tr>
<td>f5</td>
<td>SV L1 signal/noise in dBHz</td>
<td>0.0-60.0</td>
</tr>
<tr>
<td>f6</td>
<td>SV L2 signal/noise in dBHz</td>
<td>0.0-60.0</td>
</tr>
<tr>
<td>f7</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>c8</td>
<td>Satellite usage status (see NOTE below)</td>
<td></td>
</tr>
<tr>
<td>c9</td>
<td>Satellite correcting status (see NOTE below)</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Fields f5-f7 are empty is the corresponding signal is not tracked.

NOTE: For more information on satellite usage status and satellite correcting status, refer to Satellite Status on page 516.

Example
$PASHQ,SGP$

$PASHR,SGP,13,20,092,32,44.0,35.0,,2,4,...$

Related Commands
$PASHS,NME$

Automatic Output of SGP Messages
This is a reminder on how to output SGP messages at regular intervals of time: Use the $PASHS,NME command with the syntax below:

$PASHS,NME,SGP,<port_ID>,ON,<Rate>
For more details on the $PASHS,NME command, refer to the Set Command Library Chapter.
As an example, the command below will output SGP messages on port A at a rate of 10 seconds:
$PASHS,NME,SGP,A,ON,10

SIT: Site Name

Function
This command is used to read the name of the site on which data is currently being logged.

Command Format
Syntax
$PASHQ,SIT[*cc]

Response Format
Syntax
$PASHR,SIT,s*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>Site name</td>
<td>4 characters max.</td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Example

$PASHQ,SIT
$PASHR,SIT,SITE*1D

Related Commands

$PASHS,SIT

SLB: L-Band Satellites Status

Function
This command is used to read the status of each L-Band satellite received.

Command Format
Syntax
$PASHQ,SLB[*cc]
Response Format

Syntax

$PASHR,SLB,d1,n(d2,d3,d4,d5,f6)*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Number of visible satellites</td>
<td>0-7</td>
</tr>
<tr>
<td>d2</td>
<td>L-Band satellite number</td>
<td>1-7</td>
</tr>
<tr>
<td>d3</td>
<td>Continuous tracking interval, in seconds</td>
<td></td>
</tr>
<tr>
<td>d4</td>
<td>SV azimuth angle, in degrees</td>
<td>0-359</td>
</tr>
<tr>
<td>d5</td>
<td>SV elevation angle, in degrees</td>
<td>0-90</td>
</tr>
<tr>
<td>d6</td>
<td>SV signal/noise in dB.Hz</td>
<td>0.0-60.0</td>
</tr>
<tr>
<td>cc</td>
<td>Checksum</td>
<td>"00-"FF"</td>
</tr>
</tbody>
</table>

Example

$PASHQ,SLB

$PASHR,SLB,1,1,2356,092,32,44.0*7D

Related Commands

$PASHS,NME

Automatic Output of SLB Messages

This is a reminder on how to output SLB messages at regular intervals of time: Use the $PASHS,NME command with the syntax below:

$PASHS,NME,SLB,<port_ID>,ON,<Rate>

For more details on the $PASHS,NME command, refer to the Set Command Library Chapter.

As an example, the command below will output SLB messages on port A at a rate of 10 seconds:

$PASHS,NME,SLB,A,ON,10

SNS: M-Sensor Setting

Function

This command is used to query the receiver for the M-Sensor setting.

Command Format

Syntax

$PASHQ,SNS[*cc]

Response Format

Syntax

$PASHR,SNS,s1,d2*cc
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>M-Sensor current setting:</td>
<td>SOL, DUO</td>
</tr>
<tr>
<td></td>
<td>• SOL: SOLO mode (one sensor)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• DUO: DUO mode (two sensors)</td>
<td></td>
</tr>
<tr>
<td>d2</td>
<td>Index specifying antenna/sensor configuration</td>
<td>0-2</td>
</tr>
<tr>
<td></td>
<td>(default: 0). See table below.</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>d2</th>
<th>s1=SOL</th>
<th>s1=DUO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 or blank</td>
<td>• L1/L2 GNSS sensor selects antenna connector automatically.</td>
<td>• One L1/L2 GNSS sensor serves antenna connector #1, other L1-only GNSS sensor serves antenna connector #2.</td>
</tr>
<tr>
<td></td>
<td>• L-band sensor can be enabled only for 1st antenna input by command $PASHS,GLB.</td>
<td>• L-band sensor can be enabled only for 1st antenna input by command $PASHS,GLB.</td>
</tr>
<tr>
<td></td>
<td>• L-band sensor cannot start, if GNSS sensor connected to 2nd antenna.</td>
<td>• L-band sensor cannot start.</td>
</tr>
<tr>
<td>1</td>
<td>• L1/L2 GNSS sensor always serves antenna connector #1.</td>
<td>• One L1/L2 GNSS sensor serves antenna connector #1, other L1-only GNSS sensor serves antenna connector #2.</td>
</tr>
<tr>
<td></td>
<td>• L-band sensor can be enabled only for 1st antenna input by command $PASHS,GLB.</td>
<td>• L-band sensor can be enabled only for 1st antenna input by command $PASHS,GLB.</td>
</tr>
<tr>
<td>2</td>
<td>• L1/L2 GNSS sensor always serves antenna connector #2.</td>
<td>• One L1/L2 GNSS sensor serves antenna connector #1, other similar L1/L2 GNSS sensor serves antenna connector #2.</td>
</tr>
<tr>
<td></td>
<td>• L-band sensor cannot start.</td>
<td>• L-band sensor cannot start.</td>
</tr>
</tbody>
</table>

Example

$PASHQ,SNS
$PASHR,SNS,SOL,*46

SQZ: QZSS Satellites Status

Function

This command is used to read the status of each QZSS satellite received.

Command Format

Syntax

$PASHQ,SQZ[*cc]
Response Format
Syntax

```
$PASHR,SQZ,d1,n(d2,d3,d4,f5,f6,f7,c8,c9)*cc
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Number of visible satellites</td>
<td>0-5</td>
</tr>
<tr>
<td>d2</td>
<td>SV PRN number</td>
<td>1-5</td>
</tr>
<tr>
<td>d3</td>
<td>SV azimuth in degrees</td>
<td>0-359</td>
</tr>
<tr>
<td>d4</td>
<td>SV elevation angle in degrees</td>
<td>0-90</td>
</tr>
<tr>
<td>f5</td>
<td>SV L1 signal/noise in dB Hz</td>
<td>0.0-60.0</td>
</tr>
<tr>
<td>f6</td>
<td>SV L2 signal/noise in dB Hz</td>
<td>0.0-60.0</td>
</tr>
<tr>
<td>f7</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>c8</td>
<td>Satellite usage status (see NOTE below)</td>
<td></td>
</tr>
<tr>
<td>c9</td>
<td>Satellite correcting status (see NOTE below)</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Fields f5-f7 are empty is the corresponding signal is not tracked. QZSS L1 SAIF tracking status is not reported here.

NOTE: For more information on satellite usage status and satellite correcting status, refer to *Satellite Status* on page 516.

Example

```
$PASHQ,SQZ

$PASHR,SQZ,13,20,092,32,44.0,35.0,,2,4,...
```

Related Commands

- $PASHS,NME
- $PASHQ,SSB (for QZSS L1 SAIF tracking status)

Automatic Output of SQZ Messages

This is a reminder on how to output SQZ messages at regular intervals of time: Use the `$PASHS,NME` command with the syntax below:

```
$PASHS,NME,SQZ,<port_ID>,ON,<Rate>
```

For more details on the `$PASHS,NME` command, refer to the *Set Command Library* Chapter.

As an example, the command below will output SQZ messages on port A at a rate of 10 seconds:

```
$PASHS,NME,SQZ,A,ON,10
```
SSB: SBAS Satellites Status

Function
This command is used to read the status of each SBAS satellite received.

Command Format

Syntax

\[$\text{PASHQ} \text{SSB}[^{\text{cc}}]\]

Response Format

Syntax

\[$\text{PASHR} \text{SSB},d1,n(d2,d3,d4,f5,f6,f7,c8,c9),[^{\text{cc}}]\]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Number of visible satellites</td>
<td>1-39</td>
</tr>
<tr>
<td>d2</td>
<td>SV PRN number</td>
<td>1-39</td>
</tr>
<tr>
<td>d3</td>
<td>SV azimuth in degrees</td>
<td>0-359</td>
</tr>
<tr>
<td>d4</td>
<td>SV elevation angle in degrees</td>
<td>0-90</td>
</tr>
<tr>
<td>f5</td>
<td>SV L1 signal/noise in dB Hz</td>
<td>0.0-60.0</td>
</tr>
<tr>
<td>f6</td>
<td>Empty field</td>
<td></td>
</tr>
<tr>
<td>f7</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>c8</td>
<td>Satellite usage status</td>
<td></td>
</tr>
<tr>
<td>c9</td>
<td>Satellite correcting status</td>
<td></td>
</tr>
<tr>
<td>[^{\text{cc}}]</td>
<td>Checksum</td>
<td>\text{00-FF}</td>
</tr>
</tbody>
</table>

Fields f5-f7 are empty is the corresponding signal is not tracked. QZSS L1 SAIF tracking status is reported here and corresponds to PRN numbers 40-44.

NOTE: For more information on satellite usage status and satellite correcting status, refer to *Satellite Status on page 516.*

Example

\[$\text{PASHQ} \text{SSB}$$\]

\[$\text{PASHR} \text{SSB},13,20,092,32,44.0,35.0,,2,4,\ldots$$\]

See also

\[$\text{PASHS} \text{NME}$$\]

Automatic Output of SSB Messages
This is a reminder on how to output SSB messages at regular intervals of time: Use the \[$\text{PASHS} \text{NME}\$ command with the syntax below:

\[$\text{PASHS} \text{NME},\text{SSB},<\text{port}_\text{ID}>,\text{ON},<\text{Rate}>$$

461
For more details on the $PASHS,NME command, refer to the Set Command Library Chapter.

As an example, the command below will output SSB messages on port A at a rate of 10 seconds:

$PASHS,NME,SSB,A,ON,10

STI: Station ID

Function

This command is used to query the receiver for the station ID it transmits to the rover through the corrections message.

Command Format Syntax

$PASHQ,[d0,]STI[*cc]

Response Format Syntax

$PASHR,d0,STI,d1*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d0</td>
<td>Interrogated sensor number:</td>
<td>1, 2, blank</td>
</tr>
<tr>
<td></td>
<td>• 1: Primary antenna sensor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2: Secondary antenna sensor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Blank: Both</td>
<td></td>
</tr>
<tr>
<td>d1</td>
<td>Station ID</td>
<td>0-1023 (RTCM 2.3)</td>
</tr>
<tr>
<td></td>
<td>0-4095 (RTCM 3.x)/ATOM</td>
<td>0-31 (CMR & CMR+)</td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>00-FF</td>
</tr>
</tbody>
</table>

Example

$PASHQ,STI
$PASHR,1,STI,817*35
$PASHR,2,STI,880*38

Relevant Set Command

$PASHS,STI
TCP: TCP/IP Server Settings

Function
This command is used to query the settings of the TCP/IP server.

Command Format Syntax
$PASHQ,TCP[,c6]["cc"]$

Response Format Syntax
$PASHR,TCP,MOD=s1,LGN=s2,PWD=s3,ADD=s4,PRT=d5,IPP=c6[,RIP=s7]*cc$

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
</table>
| MOD=s1 | TCP/IP connection mode:
 • 0: Disabled
 • 1: Input/output with authentication
 • 2: Input/output without authentication (default)
 • 3: Output only. Allows multiple connections
 UDP/IP connection mode:
 • 4: Broadcast transmit (output only)
 • 5: Broadcast receive (input only)
 • 6: Transmit to remote IP address (output only)
 • 7: Received from remote IP address (input only) | 0-7 |
| LGN=s2 | Login | 32 char. max. |
| PWD=s3 | Password | 32 char. max. |
| ADD=s4 | IP address | 0.0.0.0-255.255.255.255 |
| PRT=d5 | Port number | 0-65535 |
| IPP=c6 | Port name | I, F |
| RIP=s7 | Remote IP address (returned when UPD/IP mode is used) | 32 char. max. |
| "cc" | Checksum | '00'-FF |

Example
$PASHQ,TCP$
$PASHR,TCP,MOD=1,LGN=Trimble,PWD=U6hu28,ADD=192.34.76.1,PRT=8888,IPP=F*2C$

Related Commands
$PASHS,TCP,PAR$
TEM: Die Temperature

Function
This command is used to query the receiver for the die (or junction) temperature.
The reading does not reflect the case temperature or ambient temperature. It is not exactly the temperature of the entire die either, but rather the temperature measured by the sensor located in the vicinity of the die (the temperature being not uniformly distributed).

Command Format Syntax
$PASHQ,TEM[*cc]

Response Format Syntax
$PASHR,TEM,d1*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Die temperature, in degrees C</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Example
$PASHQ,TEM
$PASHR,TEM,54*05

Automatic Output of TEM Messages
This is a reminder on how to output TEM messages at regular intervals of time: Use the $PASHS,NME command with the syntax below:
$PASHS,NME,TEM,<port_ID>,ON,<Rate>
For more details on the $PASHS,NME command, refer to the Set Command Library Chapter.
As an example, the command below will output TEM messages on port A at a rate of 10 seconds:
$PASHS,NME,TEM,A,ON,10
THS: True Heading and Status

Function
This command is used to output the NMEA “THS” message providing the last computed value of true heading.

Command Format Syntax

```
$PASHQ,THS[*cc]
```

Response Format Syntax

```
$PASHR,THS,f1,c2*cc
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>f1</td>
<td>Last computed heading value, in degrees (true).</td>
<td>000.00-359.99</td>
</tr>
<tr>
<td>c2</td>
<td>Solution status:</td>
<td>A, E, M, S, V</td>
</tr>
<tr>
<td></td>
<td>- A: Autonomous</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- E: Estimated (dead reckoning)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- M: Manual input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- S: Simulator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- V: Data not valid (including standby)</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Example

```
$PASHQ,THS
$GPTHS,123.56,A*61
```

Related Commands

```
$PASHS,NME
```

Automatic Output of THS Messages
This is a reminder on how to output THS messages at regular intervals of time: Use the $PASHS,NME command with the syntax below:

```
$PASHS,NME,THS,<port_ID>,ON,<Rate>
```

For more details on the $PASHS,NME command, refer to the Set Command Library Chapter.

As an example, the command below will output THS messages on port A at a rate of 10 seconds:

```
$PASHS,NME,THS,A,ON,10
```
TOP: Type of Position Delivered

Function
This command is used to read the type of position the receiver is allowed to deliver in all NMEA and ATOM PVT output messages.

Command Format Syntax
```
$PASHQ,TOP[*cc]
```

Response Format Syntax
```
$PASHR,TOP,s1*cc
```

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>Allowed type of position delivered by the receiver:</td>
<td>RTK, PPP, DIF,</td>
</tr>
<tr>
<td></td>
<td>• RTK: Up to RTK</td>
<td>SBA, ALO</td>
</tr>
<tr>
<td></td>
<td>• PPP: Up to PPP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• DIF: Up to differential (RTCM)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• SBA: Up to differential (SBAS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ALO: Standalone only (autonomous)</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>"00"-"FF"</td>
</tr>
</tbody>
</table>

Example
```
$PASHQ,TOP
$PASHR,TOP,RTK*4D
```

Related Commands
- `$PASHS,TOP` (set command)

TRS: Reading Information on TERIAsat

Function
This message provides information on the TERIAsat service.

Command Format Syntax
```
$PASHQ,TRS[*cc]
```

Parameters
None.

466
Response Format

Syntax

$PASHR,TRS,d1,s2,s3,d4,s5*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
</table>
| d1 | TERIAsat installation status:
• 0: Not installed
• 1: Installed | 0, 1 |
| s2 | Version number | |
| s3 | Version date (dd/mm/yy) | |
| d4 | License validity status:
• 0: No valid license
• 1: Valid license | 0, 1 |
| s5 | License expiration date (dd/mm/yyyy) | |
| *cc | Optional checksum | "00-FF" |

Response Examples

TERIAsat not installed:

$PASHR,TRS,0,,0,

TERIAsat installed but not licensed:

$PASHR,TRS,1,1.05,08/10/2018,0,

TERIAsat installed and license has expired:

$PASHR,TRS,1,1.05,08/10/2018,01/08/2018

TERIAsat installed and license is valid:

$PASHR,TRS,1,1.05,08/10/2018,31/12/2018

Related Commands

$PASHS,PPP

TTT: Event Marker

Function

This message provides the GPS time of the external event.
The time is provided with an accuracy of 1 microsecond

Response Format

Syntax

$PASHR,TTT,d1,m2*cc
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Day of week:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1. Sunday</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 7. Saturday</td>
<td>1-7</td>
</tr>
<tr>
<td>m2</td>
<td>GPS time tag in hours, minutes, seconds</td>
<td>0-23:59:59.9999999</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Example

$PASHR,TTT,3,18:01:33.1200417*AC

Comments

- Issuing this output message is tied to the prior execution of the appropriate $PASHS,NME,TTT command (see NME: Enabling/Disabling NMEA Messages on page 233), and the detection of a signal at the board’s external event input. There is no query command associated with the output of the TTT message.
- This message is independent of the NMEA period. It can be output faster or slower than the NMEA period, depending on the period of the event.

UDP: User-Defined Dynamic Model

Function

This command is used to read the parameters of the user-defined dynamic model.

Command Format Syntax

$PASHQ,UDP[*cc]

Response Format Syntax

$PASHR,UDP,f1,f2,f3,f4*cc
Query Command Library

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>f1</td>
<td>Maximum expected horizontal velocity, in m/s</td>
<td>0-100 000</td>
<td>100 000</td>
</tr>
<tr>
<td>f2</td>
<td>Maximum expected horizontal acceleration, in m/s²</td>
<td>0-100</td>
<td>100</td>
</tr>
<tr>
<td>f3</td>
<td>Maximum expected vertical velocity, in m/s</td>
<td>0-100 000</td>
<td>100 000</td>
</tr>
<tr>
<td>f4</td>
<td>Maximum expected vertical acceleration, in m/s²</td>
<td>0-100</td>
<td>100</td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>*00-*FF</td>
<td></td>
</tr>
</tbody>
</table>

Example

$PASHQ,UDP
$PASHR,UDP,10,1,2,0.5*1D

Related Commands

$PASHS,UDP (set command)
$PASHS,DYN

UPL: FTP Server Providing Firmware Upgrades

Function

This command is used to read the status and settings of the FTP server used to perform firmware upgrades.

Command Format

Syntax

$PASHQ,UPL[*cc]

Parameters

None.

Response format Syntax

$PASHR,UPL,s1,s2,d3,d4,ADD=s5,PRT=d6,LGN=s7,PWD=s8,PTH=s9*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>FTP data transfer status:</td>
<td>NONE, GET</td>
</tr>
<tr>
<td></td>
<td>• NONE: No data transfer in progress</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• GET: Firmware upgrade being downloaded from FTP</td>
<td></td>
</tr>
<tr>
<td>s2</td>
<td>Name of the file being transferred</td>
<td>255 char max.</td>
</tr>
<tr>
<td>s3</td>
<td>Size, in bytes, of the file being transferred</td>
<td>0-134217728</td>
</tr>
</tbody>
</table>
Parameter | Description | Range
--- | --- | ---
D4 | Percentage of the file transferred so far | 0-100
ADD=s5 | FTP server IP address or host name |
PRT=d6 | FTP server port number | 0-65535
LGN=s7 | FTP server log in | 32 char max.
PWD=s8 | FTP server password | 32 char max.
PTH=s9 | Path used on FTP server to access the upgrade file | 255 char max.
"cc" | Optional checksum | *00-*FF

Example

$PASHQ,UPL,"3E
$PASHR,UPL,GET,pf800_upgrade_V227Ga21.tar.bz2,1769897,56,
ADD=ftp.ashtech.com,PRT=21,LGN=Ashtech,PWD=u6huz8,
PTH=/my folder*7D

See Also

$PASHS,UPL,PAR
$PASHS,UPL,UPG
$PASHQ,UPL,LST

UPL,LOG: Editing the Firmware Upgrade Log File

Function

This command is used to edit the firmware upgrade log file. This file logs all the actions performed during a firmware upgrade routine.

Command Format Syntax

$PASHQ,UPL,LOG[d]["cc"]

Parameters

None.

Response format Syntax

The response is formatted as follows:

$PASHR,UPL,LOG
Starting script at <Day> <Month> <Time> UTC <Year>
Programming tool is /usr/local/bin/dataflash_tool
...

Example

$PASHR,UPL,LOG
Starting upgrade script 1.0.6 at Wed Feb 19 16:07:59 UTC 2014 smod=1
Linux am37x-evm 2.6.37 #646 PREEMPT Tue Dec 3 18:26:43 RST 2013
armv7l GNU/Linux
Filesystem Details

<table>
<thead>
<tr>
<th>Filesystem</th>
<th>1K-blocks</th>
<th>Used</th>
<th>Available</th>
<th>Use%</th>
<th>Mounted on</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/root</td>
<td>43451</td>
<td>43451</td>
<td>0</td>
<td>100%</td>
<td>/</td>
</tr>
<tr>
<td>tmpfs</td>
<td>16384</td>
<td>16</td>
<td>16368</td>
<td>0%</td>
<td>/var/volatile</td>
</tr>
<tr>
<td>tmpfs</td>
<td>58092</td>
<td>0</td>
<td>58092</td>
<td>0%</td>
<td>/dev/shm</td>
</tr>
<tr>
<td>tmpfs</td>
<td>16384</td>
<td>16</td>
<td>16368</td>
<td>0%</td>
<td>/media/ram</td>
</tr>
<tr>
<td>ubi0:bin</td>
<td>23552</td>
<td>2436</td>
<td>19864</td>
<td>11%</td>
<td>/mnt/bin</td>
</tr>
<tr>
<td>ubi1:conf</td>
<td>15856</td>
<td>76</td>
<td>14912</td>
<td>1%</td>
<td>/mnt/config</td>
</tr>
<tr>
<td>ubi2:log</td>
<td>15856</td>
<td>32</td>
<td>14956</td>
<td>0%</td>
<td>/mnt/log</td>
</tr>
<tr>
<td>ubi3:pvt</td>
<td>15856</td>
<td>68</td>
<td>14920</td>
<td>0%</td>
<td>/mnt/pvt</td>
</tr>
<tr>
<td>ubi4:card</td>
<td>1501776</td>
<td>656</td>
<td>1496284</td>
<td>0%</td>
<td>/media/card</td>
</tr>
<tr>
<td>/dev/mmcblk0p1</td>
<td>495168</td>
<td>21648</td>
<td>473520</td>
<td>4%</td>
<td>/media/cf</td>
</tr>
</tbody>
</table>

Previous product version: 1.0.42

Checking Warranty at: Wed Feb 19 16:08:00 UTC 2014

Upgrading Step 1/9

```
quickt start
unpack sp4_rootfs to /media/cf
unpakc ret 0
```

Unpacking sp4_rootfs to /media/cf

```
rwxr-xr-x 1 root root 44683384 Feb 18 08:36 sp4_rootfs
```
Query Command Library

-rw-r-xr-x 1 root root 45 Feb 18 08:36 sp4_rootfs.md5
Org hash 743136798392617e7cf21187ae70369a sp4_rootfs
File hash 743136798392617e7cf21187ae70369a sp4_rootfs
Upgrading Step 2/9
wr sp4_rootfs to /dev/mtdblock6
MTD total size: 8000000 bytes, MTD erase size: 40000 bytes
writing 44688384 bytes from /media/cf/sp4_rootfs to /dev/mtdblock6 (/dev mtd6), offset 0x100000, block size 0x40000
complete 44688384
md5sum 743136798392617e7cf21187ae70369a
Upgrading Step 3/9
unpack uImage-sp4 to /media/cf
Unpack ret 0
-rw-r-xr-x 1 root root 2834628 Feb 18 08:36 uImage-sp4
-rw-r-xr-x 1 root root 45 Feb 18 08:36 uImage-sp4.md5
203aa4a2d531d3ecbbcbdea809e9664d uImage-sp4
Orig hash 203aa4a2d531d3ecbbcbdea809e9664d uImage-sp4
File hash 203aa4a2d531d3ecbbcbdea809e9664d uImage-sp4
Upgrading Step 4/9
wr uImage-sp4 to /dev/mtdblock6
MTD total size: 8000000 bytes, MTD erase size: 40000 bytes
writing 2834628 bytes from /media/cf/uImage-sp4 to /dev/mtdblock6 (/dev mtd6), offset 0x800000, block size 0x40000
block 0 offs 0x800000 0
block 1 offs 0x840000 0
block 2 offs 0x880000 0
block 3 offs 0x8c0000 0
block 4 offs 0x900000 0
block 5 offs 0x940000 0
etc.

UPL,LST: Listing the Firmware Upgrades Available on FTP

Function
This command is used to list the upgrade files and/or upgrade directories found on the FTP server.

Command Format
Syntax
$PASHQ,UPL,LST[,*]["cc]
Query Command Library

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>Path that extends the one defined with $PASHS,UPL,PAR. If s is omitted, the command lists the content of the default directory (i.e. as defined with $PASHS,UPL,PAR).</td>
<td>255 characters max.</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-**FF</td>
</tr>
</tbody>
</table>

Response format

Syntax

$PASHR,UPL,LST,d1,d2,s3,d4,d5,s6,s7*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Number of listed files or subdirectories</td>
<td></td>
</tr>
<tr>
<td>d2</td>
<td>Index of file or subdirectory</td>
<td></td>
</tr>
<tr>
<td>s3</td>
<td>Indicates whether the listed item is a file or a directory: • DIR: Directory • FIL: File</td>
<td>DIR,FIL</td>
</tr>
<tr>
<td>s4</td>
<td>Name of the file or subdirectory</td>
<td>255 characters max.</td>
</tr>
<tr>
<td>d5</td>
<td>Size, in bytes</td>
<td>0-134217728</td>
</tr>
<tr>
<td>s6</td>
<td>Date of creation (ddmmmyy)</td>
<td></td>
</tr>
<tr>
<td>s7</td>
<td>Time of creation (hhmmss)</td>
<td>000000-235959</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-**FF</td>
</tr>
</tbody>
</table>

Example

$PASHQ,UPL,LST,
$PASHR,UPL,LST,4,0,FIL,mb1_upgrade_v1.2.tar,1769897,14032009,130850*50
$PASHR,UPL,LST,4,0,FIL,mb1_upgrade_v1.3.tar,1769876,10032009,121352*5A
$PASHR,UPL,LST,4,2,FIL,mb1_upgrade_v1.4.tar,1769787,01032009,181856*52
$PASHR,UPL,LST,4,3,DIR,my directory,1769787,01032009,181856*48

See Also

$PASHS,UPL,PAR
$PASHS,UPL,UPG

VCR: Vector & Accuracy Data

Function

This command is used to output a VCR message, whose content is similar to that of the VCT message. It can be
requested only when the receiver operated in relative mode (see $PASHS,BRV$).

Unlike VCT, VCR is a time-tagged message because it describes a vector connecting two moving receivers. Up to three different VCR messages can be generated from the same time tag and antenna ID (e.g. all baselines assigned to relative mode).

Command Format

Syntax

$PASHQ,VCR[*cc]$

Response Format

Syntax

$PASHR,VCR,d0,c1,d2,m3,f4,f5,f6,f7,f8,f9,f10,f11,f12,d13,c14*cc$
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d0</td>
<td>Baseline number (see $PASHS,BRV)</td>
<td>1, 2, 3</td>
</tr>
</tbody>
</table>
| c1 | Baseline mode:
 • 0: Invalid baseline
 • 1: Differential
 • 2: RTK float
 • 3: RTK fixed
 • 5: Other (dead reckoning, bad accuracy, or baseline computed just as the difference between standalone base position and standalone rover position) | 0-3 |
| d2 | Number of SVs used in baseline computation (L1 portion) | 0-99 |
| m3 | UTC time (hhmmss.ss) | 000000.00-235959.99 |
| f4 | First coordinate of delta antenna position, ECEF, in meters | ±99999.999 |
| f5 | Second coordinate of delta antenna position, ECEF, in meters | ±99999.999 |
| f6 | Third coordinate of delta antenna position, ECEF, in meters | ±9999.999 |
| f7 | Standard deviation, first coordinate | 99.999 |
| f8 | Standard deviation, second coordinate | 99.999 |
| f9 | Standard deviation, third coordinate | 99.999 |
| f10 | Correlation (half) | ±9.999999 |
| f11 | Correlation (one third) | ±9.999999 |
| f12 | Correlation (two third) | ±9.999999 |
| d13 | Base station ID (same as GGA) | 0-4095 |
| c14 | Baseline coordinate frame ID:
 • 0: XYZ
 • 1: ENU centered on rover
 • 2: ENU centered on base | 0-2 |
| *cc | Checksum | *00-*FF |

NOTE: This message does not in any case complement position messages as its content cannot be related to any reported position.

Example

$PASHQ,VCR
SPASHR,VCR,1.3.09,130924.00,-37.683,55.081,-17.925,
0.016,0.012,0.026,0.234765,0.098765,0.098763,0001*3B

Related Commands $PASHS,NME
Automatic Output of VCR Messages

This is a reminder on how to output VCR messages at regular intervals of time: Use the $PASHS,NME command with the syntax below:

$PASHS,NME,VCR,<port_ID>,ON,<Rate>

For more details on the $PASHS,NME command, refer to the Set Command Library Chapter.

As an example, the command below will output VCR messages on port A at a rate of 0.2 second:

$PASHS,NME,VCR,A,ON,0.2

VCT: Vector & Accuracy Data

Function

This command is used to output the VCT message, which is an extension of the legacy VEC message. VCT can be requested only in a mode set up by $PASHS,RTK. The baseline vector is oriented from the base to the rover.

Command Format Syntax

$PASHQ,VCT[*cc]

Response Format Syntax

$PASHR,VCT,c1,d2,m3,f4,f5,f6,f7,f8,f9,f10,f11,f12,d13,d14,d15*cc
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1</td>
<td>Baseline mode:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 0: Invalid baseline</td>
<td>0-3, 5</td>
</tr>
<tr>
<td></td>
<td>• 1: Differential</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2: RTK float</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 3: RTK fixed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 5: Other (dead reckoning, bad accuracy, or baseline is computed just as</td>
<td></td>
</tr>
<tr>
<td></td>
<td>difference between standalone base position and standalone rover position)</td>
<td></td>
</tr>
<tr>
<td>d2</td>
<td>Number of SVs used in baseline computation</td>
<td>0-99</td>
</tr>
<tr>
<td>m3</td>
<td>UTC time (hhmmss.ss)</td>
<td></td>
</tr>
<tr>
<td>f4</td>
<td>Delta antenna position, ECEF 1st coordinate (in meters)</td>
<td>±99999.999</td>
</tr>
<tr>
<td>f5</td>
<td>Delta antenna position, ECEF 2nd coordinate (in meters)</td>
<td>±99999.999</td>
</tr>
<tr>
<td>f6</td>
<td>Delta antenna position, ECEF 3rd coordinate (in meters)</td>
<td>±99999.999</td>
</tr>
<tr>
<td>f7</td>
<td>1st coordinate standard deviation</td>
<td>99.999</td>
</tr>
<tr>
<td>f8</td>
<td>2nd coordinate standard deviation</td>
<td>99.999</td>
</tr>
<tr>
<td>f9</td>
<td>3rd coordinate standard deviation</td>
<td>99.999</td>
</tr>
<tr>
<td>f10</td>
<td>1st/2nd coord. correlation</td>
<td>±9.9999999</td>
</tr>
<tr>
<td>f11</td>
<td>1st/3rd coord. correlation</td>
<td>±9.9999999</td>
</tr>
<tr>
<td>f12</td>
<td>2nd/3rd coord. correlation</td>
<td>±9.9999999</td>
</tr>
<tr>
<td>d13</td>
<td>Base station ID (same as in GGA)</td>
<td>0-4095</td>
</tr>
<tr>
<td>d14</td>
<td>Baseline coordinate frame ID:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 0: XYZ</td>
<td>0-2</td>
</tr>
<tr>
<td></td>
<td>• 1: ENU centered on rover</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2: ENU centered on base</td>
<td></td>
</tr>
<tr>
<td>d15</td>
<td>Baseline number (see $PASHS,BLN)</td>
<td>1-3</td>
</tr>
<tr>
<td>c0</td>
<td>Checksum</td>
<td></td>
</tr>
</tbody>
</table>

Example

$PASHQ,VCT
$PASHR,VCT,3.09,130924.00,-37.68355.081,-17.925,0.016,0.012,
0.026,0.234765,0.098765,0.098763,0.001,0,1*01

Related Commands

$PASHS,NME

Automatic Output of VCT Messages

This is a reminder on how to output VCT messages at regular intervals of time: Use the $PASHS,NME command with the syntax below:

$PASHS,NME,VCT,<port_ID>,ON,<Rate>
For more details on the $PASHS,NME command, refer to the Set Command Library Chapter.

As an example, the command below will output VCT messages on port A at a rate of 0.2 second:

$PASHS,NME,VCT,A,ON,0.2

VEL: Velocity & Accuracy Message

Function
This command allows you to output the velocity & accuracy message.

Command Format Syntax
$PASHQ,VEL[*cc]

Response Format Syntax
$PASHR,VEL,f1,m2,f3,f4,f5,f7,f8,d9*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>f1</td>
<td>Reserved, set to 1. Means that velocity and accuracy correspond to local ENU (East, North, Up) system.</td>
<td>1</td>
</tr>
<tr>
<td>m2</td>
<td>Current UTC time of velocity fix (hhmmss.ss)</td>
<td></td>
</tr>
<tr>
<td>f3</td>
<td>Easting velocity, in m/s</td>
<td></td>
</tr>
<tr>
<td>f4</td>
<td>Northing velocity, in m/s</td>
<td></td>
</tr>
<tr>
<td>f5</td>
<td>Vertical velocity, in m/s</td>
<td></td>
</tr>
<tr>
<td>f6</td>
<td>Easting velocity RMS error, in mm/s</td>
<td></td>
</tr>
<tr>
<td>f7</td>
<td>Northing velocity RMS error, in mm/s</td>
<td></td>
</tr>
<tr>
<td>f8</td>
<td>Vertical velocity RMS error, in mm/s</td>
<td></td>
</tr>
<tr>
<td>d9</td>
<td>Applied effective velocity smoothing interval, in ms (empty if unknown)</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum *00-*FF</td>
<td></td>
</tr>
</tbody>
</table>

Comments
Velocity is not delivered in the message if it cannot be computed reliably. RMS errors can however be provided in this case. Frozen RMS values of velocity for Easting, Northing and Vertical (respectively 500, 500, 100) indicate that velocities are equal to or greater than these values.
Automatic Output of VEL Messages

This is a reminder on how to output VEL messages at regular intervals of time: Use the $PASHS,NME command with the syntax below:

$PASHS,NME,VEL,<port_ID>,ON,<Rate>

For more details on the $PASHS,NME command, refer to the Set Command Library Chapter.

As an example, the command below will output VEL messages on port A at a rate of 0.5 second:

$PASHS,NME,VEL,A,ON,0.5

VERSION: Firmware Version

Function

This command is used to list the firmware versions installed in the receiver, including those of the modem and internal radio.

Command Format

Syntax

$PASHQ,VERSION[*cc]

Response Format

Syntax

(Through an example)

$PASHQ,VERSION
VERSION: 1.0.40
VERSION DATE: 10/12/2013
EXPIRATION DATE: 10/12/2015
SL: 0.37 (API: 0.23)
PVT: LP60V27
DSP: LC60V27
XL1: 1.0
BL1: 1.21
OS2: 2.6.37 #646 PREEMPT 3/12/2013
XL2: 1.0
BL2: 1.21
HWID: 9dca23207931

Related Commands

$PASHQ,RID
VLP: Receiver Validity Period

Function
This command is used to query the receiver for its validity period, if any.

Command Format

Syntax

\$PASHQ,VLP[*cc]

Response Format

Syntax

\$PASHR,VLP,d1,s2[*cc]

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>Remaining number of days. Empty if no validity period defined.</td>
<td>0, 1-365</td>
</tr>
<tr>
<td>s2</td>
<td>Day when validity period expires (last day of validity). Empty if no validity period defined.</td>
<td>dd/mm/yyyy</td>
</tr>
<tr>
<td>*cc</td>
<td>Optional checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Examples

Validity period not defined:

\$PASHQ,VLP
\$PASHR,VLP,,*3E

Validity period defined and still running:

\$PASHQ,VLP
\$PASHR,VLP,10,15/12/2014*3F

Validity period defined and expired:

\$PASHQ,VLP
\$PASHR,VLP,0,01/12/2014*0B

Relevant Set Command

\$PASHS,VLP

VTG: Course Over Ground and Ground Speed

Function
This command is used to output a VTG message.

Command Format

Syntax

\$PASHQ,VTG[*cc]
Response Format

Syntax

$GPVTG,f1,T,f2,M,f3,N,f4,K,c5*cc

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>f1,T</td>
<td>COG (with respect to True North)</td>
<td>000.00-359.99</td>
</tr>
<tr>
<td></td>
<td>T for "True" North: COG orientation</td>
<td></td>
</tr>
<tr>
<td>f2,M</td>
<td>COG (with respect to Magnetic North)</td>
<td>000.00-359.99</td>
</tr>
<tr>
<td></td>
<td>M for "Magnetic" North: COG orientation</td>
<td></td>
</tr>
<tr>
<td>f3,N</td>
<td>SOG (Speed Over Ground)</td>
<td>000.00-999.999</td>
</tr>
<tr>
<td></td>
<td>N for "knots": SOG unit</td>
<td></td>
</tr>
<tr>
<td>f4,K</td>
<td>SOG (Speed Over Ground)</td>
<td>000.00-999-999</td>
</tr>
<tr>
<td></td>
<td>K for "km/hr": SOG unit</td>
<td></td>
</tr>
<tr>
<td>c5</td>
<td>Mode indicator:</td>
<td>A, D, N</td>
</tr>
<tr>
<td></td>
<td>• A: Autonomous mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• D: Differential mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• N: Data not valid</td>
<td></td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Example

$PASHQ,VTG

$GPVTG,128.00,T,129.92,M,0.17,N,0.31,K,A*2D

Related Commands

$PASHS,NME

Automatic Output of VTG Messages

This is a reminder on how to output VTG messages at regular intervals of time: Use the $PASHS,NME command with the syntax below:

$PASHS,NME,VTG,<port_ID>,ON,<Rate>

For more details on the $PASHS,NME command, refer to the Set Command Library Chapter.

As an example, the command below will output VTG messages on port A at a rate of 0.5 second:

$PASHS,NME,VTG,A,ON,0.5

WEB: Web Server Control, Owner Data & Connection Profiles

Function

This command returns the status of the web interface in a free-form format.
Query Command Library

Command Format

Syntax

\$PASHQ,WEB[*cc]

Parameters

None.

Response format

Syntax

Through an example:

\$PASHQ,WEB\'27
WEB INTERFACE: ON
HTTPD PORT: 80
COMPANY: Ashtech
ADMINISTRATOR NAME: Peter Smith
ADMINISTRATOR EMAIL: psmisht@ashtech.com
ADMINISTRATOR PHONE: 0228093838
ADMINISTRATOR LOGIN: smith
ADMINISTRATOR PASSWORD: 255kj631
SECURITY:
PRIVILEGES FOR ANONYMOUS ACCESS:
USER LOGIN: Andrew
USER PASSWORD: 25ml55
USER LOGIN: Yves
USER PASSWORD: 25ml55

See Also

\$PASHS,WEB,OWN
\$PASHS,WEB,PAR
\$PASHS,WEB,USR,ADD

ZDA: Time & Date

Function

This command returns the receiver date & time.

Command Format

Syntax

\$PASHQ,ZDA[*cc]

Response Format

\$GPZDA,ZDA,m1,d2,d3,d4,d5,d6*cc
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>m1</td>
<td>UTC time (hhmmss.ss)</td>
<td>000000.00-235959.99</td>
</tr>
<tr>
<td>d2</td>
<td>Current day</td>
<td>01-31</td>
</tr>
<tr>
<td>d3</td>
<td>Current month</td>
<td>01-12</td>
</tr>
<tr>
<td>d4</td>
<td>Current year</td>
<td>0000-9999</td>
</tr>
<tr>
<td>d5</td>
<td>Local zone offset from UTC</td>
<td>-13 to +13</td>
</tr>
<tr>
<td>d6</td>
<td>time (hour)</td>
<td>00-59</td>
</tr>
<tr>
<td>*cc</td>
<td>Checksum</td>
<td>*00-*FF</td>
</tr>
</tbody>
</table>

Example

$PASHQ,ZDA
$GPZDA,162256.27,25,02,2008,+00,00'43

Related Commands

$PASHS,ZDA
$PASHS,NME

Automatic Output of ZDA Messages

This is a reminder on how to output ZDA messages at regular intervals of time: Use the $PASHS,NME command with the syntax below:

$PASHS,NME,ZDA,<port_ID>,ON,<Rate>

For more details on the $PASHS,NME command, refer to the Set Command Library Chapter.

As an example, the command below will output ZDA messages on port A at a rate of 60 seconds:

$PASHS,NME,ZDA,A,ON,60
Chapter 9. DCOL Commands & GSOF Messages

Introduction

The MB-Two now supports the Trimble proprietary interface control protocol designed for all BD-9xx and BX-9xx products.

Refer to Chapters 1- to 4 of the Trimble OEM BD9xx GNSS Receiver Family ICD document for more information on the protocol. The same information can also be found in the on-line Web Help at http://www.trimble.com/OEM_ReceiverHelp/v5.11/en/default.html.

Below is the list of commands supported by the MB-Two:

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>06h GETSERIAL</td>
<td>Requests Receiver and Antenna Information.</td>
</tr>
<tr>
<td>07h RSERIAL</td>
<td>Returns the receiver and antenna serial numbers, types, processor versions and number of channels.</td>
</tr>
<tr>
<td>4Ah GETOPT</td>
<td>Requests a list of receiver options that are installed on the receiver.</td>
</tr>
<tr>
<td>48h RETOPT</td>
<td>Returns the receiver options installed at the factory</td>
</tr>
<tr>
<td>54h GETSVDATA</td>
<td>Requests satellite data. Request may be for an array of flags indicating what satellite data is available, a particular satellite ephemeris or almanac. In addition, satellites may be enabled/disabled with this command.</td>
</tr>
<tr>
<td>55h RETSVDATA</td>
<td>Response to the GETSVDATA command. Returns the Ephemeris/Almanac for the SV PRN requested or an array of flags indicating which satellites are being tracked, have Ephemeris/Almanac available and Enable/Disable state.</td>
</tr>
<tr>
<td>64h APPFILE</td>
<td>Transfers an appfile between an application and a receiver.</td>
</tr>
<tr>
<td>65h REQAPPFILE</td>
<td>Requests an appfile (by system number).</td>
</tr>
<tr>
<td>6Eh BREAKRET</td>
<td>Returns receivers current serial port baud rate and protocols. This is the response to a BREAK SEQUENCE (as defined below), or a BREAKREQ.</td>
</tr>
<tr>
<td>6Fh BREAKREQ</td>
<td>Request for current receiver product, firmware and software versions, serial port baud rate and protocols.</td>
</tr>
</tbody>
</table>

Details of each of these commands are given below. Where differences exist between this description and the Trimble OEM BD9xx GNSS Receiver Family ICD document, those differences are mentioned in bold characters.

When used, the term “receiver” always refers to the MB-Two board.

NOTE: Below are useful links to the Web Help about the following fields:
- Receiver Status Code
- Packet Structure
06h: GETSERIAL

Command Packet 06h requests board and antenna information. The board responds by sending the data in the Report Packet 07h.
All data in the packet flows from the data collector to the board.

<table>
<thead>
<tr>
<th>Byte</th>
<th>Item</th>
<th>Type</th>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>STX</td>
<td>1 (Char)</td>
<td>02h</td>
<td>Start transmission</td>
</tr>
<tr>
<td>1</td>
<td>STATUS</td>
<td>1 (Char)</td>
<td>??h</td>
<td>Receiver status code</td>
</tr>
<tr>
<td>2</td>
<td>PACKET TYPE</td>
<td>1 (Char)</td>
<td>06h</td>
<td>Command packet 06h</td>
</tr>
<tr>
<td>3</td>
<td>LENGTH</td>
<td>1 (Char)</td>
<td>00h</td>
<td>Data byte count</td>
</tr>
<tr>
<td>4</td>
<td>CHECKSUM</td>
<td>1 (Char)</td>
<td>??h</td>
<td>Checksum value</td>
</tr>
<tr>
<td>5</td>
<td>ETX</td>
<td>1 (Char)</td>
<td>03h</td>
<td>End transmission</td>
</tr>
</tbody>
</table>

This command is usually used during the initial connection sequence when an app is learning about whatever instrument is attached.

07h: RETSERIAL

Report Packet 07h is sent in response to command packet 06h. The report returns the board and antenna serial number, antenna type, software processor versions, and the number of reception channels.
All data in the packet flows from the board to the data collector. (See table on next page.)
<table>
<thead>
<tr>
<th>Byte</th>
<th>Item</th>
<th>Type</th>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>STX</td>
<td>1 (Char)</td>
<td>02h</td>
<td>Start transmission</td>
</tr>
<tr>
<td>1</td>
<td>STATUS</td>
<td>1 (Char)</td>
<td>??h</td>
<td>Receiver status code</td>
</tr>
<tr>
<td>2</td>
<td>PACKET TYPE</td>
<td>1 (Char)</td>
<td>07h</td>
<td>Command packet 07h</td>
</tr>
<tr>
<td>3</td>
<td>LENGTH</td>
<td>1 (Char)</td>
<td>??h</td>
<td>Bytes of data after this byte (excluding checksum and ETX)</td>
</tr>
<tr>
<td>4-11</td>
<td>RECEIVER SERIAL #</td>
<td>8 (Chars)</td>
<td>ASCII text</td>
<td>Receiver serial number. Note – On newer receivers such as the MB-Two, this field gives the lowest (least significant) 8 characters of the serial number and so the LONG SERIAL NUMBER field should be used instead.</td>
</tr>
<tr>
<td>12-19</td>
<td>RECEIVER TYPE</td>
<td>8 (Chars)</td>
<td>"MB2"</td>
<td>Board model</td>
</tr>
<tr>
<td>20-24</td>
<td>NAV PROCESS VERSION</td>
<td>5 (Chars)</td>
<td>ASCII text</td>
<td>Reference version (e.g. v0.62 reported as "00062")</td>
</tr>
<tr>
<td>25-29</td>
<td>SIG PROCESS VERSION</td>
<td>5 (Chars)</td>
<td>Reference version</td>
<td></td>
</tr>
<tr>
<td>30-34</td>
<td>BOOT ROM VERSION</td>
<td>5 (Chars)</td>
<td>Boot loader version, e.g. v1.32 reported as "00132"</td>
<td></td>
</tr>
<tr>
<td>35-42</td>
<td>ANTENNA SERIAL #</td>
<td>8 (Chars)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43-44</td>
<td>ANTENNA TYPE</td>
<td>2 (Chars)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45-46</td>
<td># CHANNELS</td>
<td>2 (Chars)</td>
<td>"00"</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>47-48</td>
<td># CHANNELS L1</td>
<td>2 (Chars)</td>
<td>"00"</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>49-58</td>
<td>LONG SERIAL NUMBER</td>
<td>10 (Chars)</td>
<td>This is the serial number that should be used instead of RECEIVER SERIAL #.</td>
<td></td>
</tr>
<tr>
<td>58-89</td>
<td>LOCAL LONG ANT SERIAL</td>
<td>31 (Chars)</td>
<td>Not Applicable</td>
<td></td>
</tr>
<tr>
<td>80-120</td>
<td>BASE LONG ANT SERIAL</td>
<td>31 (Chars)</td>
<td>Not Applicable</td>
<td></td>
</tr>
<tr>
<td>121-151</td>
<td>BASE NGS ANT DESCRIP-</td>
<td>31 (Chars)</td>
<td>Antenna name</td>
<td></td>
</tr>
<tr>
<td>152-153</td>
<td>USABLE CHANNELS</td>
<td>2 (Bytes)</td>
<td>Maximum number of usable channels with current configuration</td>
<td></td>
</tr>
<tr>
<td>154-155</td>
<td># PHYSICAL CHANNELS</td>
<td>2 (Bytes)</td>
<td>Total number of hardware channels present.</td>
<td></td>
</tr>
<tr>
<td>156</td>
<td># SIMULTANEOUS CHANNELS</td>
<td>1 (Byte)</td>
<td>Number of satellites that the receiver can track at one time.</td>
<td></td>
</tr>
<tr>
<td>157-161</td>
<td>Antenna INI version</td>
<td>5 (Chars)</td>
<td>ASCII text</td>
<td>Antenna.ini file version (e.g. v7.13 reported as "00713")</td>
</tr>
<tr>
<td>162</td>
<td>CHECKSUM</td>
<td>1 (Char)</td>
<td>??h</td>
<td>Checksum value</td>
</tr>
<tr>
<td>163</td>
<td>ETX</td>
<td>1 (Char)</td>
<td>03h</td>
<td>End transmission</td>
</tr>
</tbody>
</table>
4Ah: GETOPT

This command requests a list of receiver options that are installed in the board. All data in DCOL packets should be stored in Big-Endian format. All data in the packet flows from the data collector to the board. The board responds by sending the data in response 4Bh, RETOPT.

<table>
<thead>
<tr>
<th>Byte</th>
<th>Item</th>
<th>Type</th>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>STX</td>
<td>1 (Char)</td>
<td>02h</td>
<td>Start transmission</td>
</tr>
<tr>
<td>1</td>
<td>STATUS</td>
<td>1 (Char)</td>
<td>00h</td>
<td>Receiver status code</td>
</tr>
<tr>
<td>2</td>
<td>PACKET TYPE</td>
<td>1 (Char)</td>
<td>4Ah</td>
<td>Command packet 4Ah</td>
</tr>
<tr>
<td>3</td>
<td>LENGTH</td>
<td>1 (Char)</td>
<td>00h or 01h</td>
<td>Bytes of data after this byte (excluding CHECKSUM and ETX).</td>
</tr>
<tr>
<td>4</td>
<td>OPTIONS PAGE</td>
<td>1 (byte)</td>
<td>00h, 01h or 02h</td>
<td>Selects the required options information page:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 0: (or not present) Send original (legacy) options packet</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 1...n: Send subsequent options pages</td>
</tr>
<tr>
<td>5</td>
<td>CHECKSUM</td>
<td>1 (Char)</td>
<td>??h</td>
<td>Checksum value</td>
</tr>
<tr>
<td>6</td>
<td>ETX</td>
<td>1 (Char)</td>
<td>03h</td>
<td>End transmission</td>
</tr>
</tbody>
</table>
4Bh: RETOPT

This packet response returns all the options installed in the board. All data in the packet flows from the board to the data collector. Report Packet 4Bh is sent in response to command 4Ah, GETOPT.

<table>
<thead>
<tr>
<th>Byte</th>
<th>Item</th>
<th>Type</th>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>STX</td>
<td>1 (Char)</td>
<td>02h</td>
<td>Start transmission.</td>
</tr>
<tr>
<td>1</td>
<td>STATUS</td>
<td>1 (Char)</td>
<td>??h</td>
<td>Receiver status code.</td>
</tr>
<tr>
<td>2</td>
<td>PACKET TYPE</td>
<td>1 (Char)</td>
<td>4Bh</td>
<td>Command packet 4Bh</td>
</tr>
<tr>
<td>3</td>
<td>LENGTH</td>
<td>1 (Char)</td>
<td>31h or ??h</td>
<td>Bytes of data after this byte (excluding checksum and ETX).</td>
</tr>
<tr>
<td>4</td>
<td>ELEVATION MASK / PAGE</td>
<td>1 (byte)</td>
<td></td>
<td>Elevation Mask, or 5Bh, or 5Ch</td>
</tr>
</tbody>
</table>

--- If ELEVATION MASK/PAGE=91 (90, 91 and 92 available)

<table>
<thead>
<tr>
<th>Byte</th>
<th>Item</th>
<th>Type</th>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Number of Pages Supported</td>
<td>1 (byte)</td>
<td>02h</td>
<td></td>
</tr>
<tr>
<td>6-7</td>
<td>RESERVED</td>
<td>2 (short)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-9</td>
<td>RESERVED</td>
<td>2 (short)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-11</td>
<td>RESERVED</td>
<td>2 (short)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-15</td>
<td>OPTION BLOCK BITS 0–31 (LSB is bit 0)</td>
<td>4 (int)</td>
<td></td>
<td>OPTION BLOCK BITS 0–95 best processed as 3 unsigned long integers. For example, to determine if the GLONASS option is installed in receiver, check if bit #32 is enabled (1).</td>
</tr>
<tr>
<td>16-19</td>
<td>OPTION BLOCK BITS 32–63 (LSB is bit 32)</td>
<td>4 (int)</td>
<td></td>
<td>GLONASS enable bit (data byte 16 counting from 1 page number) and least significant bit (0) of that byte. The currently defined bits are given below this table.</td>
</tr>
<tr>
<td>20-23</td>
<td>OPTION BLOCK BITS 64–95 (LSB is bit 64)</td>
<td>4 (int)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24-25</td>
<td>RESERVED</td>
<td>2 (short)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26-28</td>
<td>RESERVED</td>
<td>3 (bytes)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29-31</td>
<td>RESERVED</td>
<td>3 (bytes)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>RESERVED</td>
<td>1 (byte)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>RESERVED</td>
<td>1 (byte)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>RESERVED</td>
<td>1 (byte)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>RESERVED</td>
<td>1 (byte)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36-37</td>
<td>RESERVED</td>
<td>2 (short)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>CHECKSUM</td>
<td>1 (Char)</td>
<td>??h</td>
<td>Checksum value. See Packet structure, page 10</td>
</tr>
<tr>
<td>39</td>
<td>ETX</td>
<td>1 (Char)</td>
<td>03h</td>
<td>End transmission.</td>
</tr>
</tbody>
</table>
Where:
Option block bits are defined as follows: bit = 1 (enabled), bit = 0 (disabled)
bit 0: CMR inputs
bit 1: CMR outputs (if option [K] is active)
bit 2: RTCM inputs
bit 3: RTCM outputs (if option [K] is active)
bit 4: N/A
bit 5: N/A
bit 6: N/A
bit 7: N/A
bit 8: Moving base
bit 9: 10Hz measurements (if option [6] active)
bit 10: 20Hz measurements (if option [W] active)
bit 11: Data logging (internal Rx memory), if option [R] active
bit 12: N/A
bit 13: N/A
bit 14: Event markers
bit 15: N/A
bit 16: N/A
bit 17: N/A
bit 18: N/A
bit 19: N/A
bit 20: N/A
bit 21: L2CS support (if option [Y] active)
bits 22–31: N/A
bit 32: GLONASS enabled (if option [G] active)
bit 33: Enable Web UI support
bit 34: Enable USB on the go and hard drive logging support
bit 35-43: N/A
bit 44: Disable SBAS (if option [N] active)
bits 45-46: N/A
bit 47: Disable CMRx output
bits 48-51: N/A
bit 52: Enable compass (if option [B] active)
bits 53-54: N/A
bit 55: Galileo enabled (if option [O] active)
bits 56-63: N/A
bit 64: N/A
<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>N/A</td>
</tr>
<tr>
<td>66</td>
<td>QZSS enabled (if option [N] active)</td>
</tr>
<tr>
<td>67</td>
<td>N/A</td>
</tr>
<tr>
<td>68</td>
<td>L1 RTK support enabled</td>
</tr>
<tr>
<td>69</td>
<td>N/A</td>
</tr>
<tr>
<td>70</td>
<td>N/A</td>
</tr>
<tr>
<td>71-76</td>
<td>N/A</td>
</tr>
<tr>
<td>77</td>
<td>N/A</td>
</tr>
<tr>
<td>78-80</td>
<td>N/A</td>
</tr>
<tr>
<td>81</td>
<td>Disable GPS (if option [N] active)</td>
</tr>
<tr>
<td>82-95</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Command 54h requests satellite information. The request may be for an array of flags showing the availability of satellite information such as an ephemeris or almanac. In addition, satellites may be enabled or disabled with this command.

All data in the packet flows from the data collector to the board.

Byte	**Item**	**Type**	**Value**	**Meaning**
0 | STX | 1 (Char) | 02h | Start transmission
1 | STATUS | 1 (Char) | 00h | Receiver status code
2 | PACKET TYPE | 1 (Char) | 54h | Command type
3 | LENGTH | 1 (Char) | ??h | Data byte count
4 | SUBTYPE | 1 (Byte) | Supported subtypes: 20 (SV Enable/Disable)
5 | SV PRN NUMBER | 1 (Byte) | |
6 | SAT TYPE | 1 (Byte) | 0: GPS 1: SBAS (WAAS, EGNOS, MSAS etc) 2: GLONASS 3: Galileo 4: QZSS 5: Beidou (pre-ICD SV numbering) 6: OmniStar 7: Beidou (ICD SV numbering) 9: IRNSS 10: Beidou (with 1/2 phase correction on B1 signal from Geo SVs)
7 | MODE | 1 (Byte) | 0=Return SV flags for SAT TYPE; 1=Disable SV 2=Enable SV

Where:

SUBTYPE: indicates what is requested:
- 20: SV Enable/Disable/Ignore Health Controls.

SV PRN Number: Satellite number for which ephemeris/almanac is required or to be enabled/ disabled; ignored if SV flags or ION / UTC data is requested:
• 1–32: GPS satellites.
• 1–24: (GLONASS SV 1–24).
• Galileo SV Range: 1–36.
• QZSS SV Range: 193 - 198.
• BeiDou SV Range: 1–30.

FLAGS: Bitmapped field having the following values:
• Bit 0 set: Return GLONASS Flags appended to the GPS FLAGS replies (subtypes 0, 4, 5).
• Bit 1 set: Return Galileo and GLONASS Flags appended to the GPS FLAGS replies (subtypes 0, 4, 5). SV being controlled is Galileo, not GPS or GLONASS (subtypes 4, 5).
• Bits 2 and 3 are ignored

SAT TYPE: Subtype 20 only. Specifies the Satellite System for the PRN which is being configured.
• 0: GPS: 1–32
• 1: SBAS (WAAS, EGNOS, MSAS, etc.): 1–39 (PRN 120–158)
• 2: GLONASS: 1–24
• 3: Galileo: 1–36
• 4: QZSS: 1–5 (PRN 193-197)
• 7: BeiDou: 1–30

MODE: Subtype 20 only.
• 0: Return SV flags for SAT TYPE
• 1: Disable SV
• 2: Enable SV
• 3: Not supported
• Only Mode = 0 is valid for SBAS.

The reply for this command will be a RETSVDATA report packet, or a NAK if the request failed.
Enable/Disable satellite (subtype 20) always returns RETSVDATA (subtype 20) as if SV Flags were requested.
Report Packet 55h is sent in response to Command Packet 54h. The report includes either the ephemeris or almanac information for a specific satellite, or ION/UTC data, the Enabled/Disabled state and Heed/Ignore Health state of all satellites, or the condition of satellite status flags for one satellite or all satellites.

All data in the packet flows from the board to the data collector.

Returns a NAK if the GETSVDATA request meets one of the following criteria:
- SV PRN is out of range (except for SV flags)
- Data Switch is out of range
- Data is not available for the requested SV.

SV Flags report

The SV FLAGS report is sent when Command Packet 54h is used to request the status of the SV Flags for one satellite or all satellites. The Command Packet 54h SUBTYPE byte (byte 4) is set to twenty (20) when requesting the report.

--- DATA RECORDS 0—22 ---

Data from one of the records that are encoded in type 55h records, as indicated by byte #4 SUBTYPE. The supported subtypes are:

20: Generic SV Flags

<table>
<thead>
<tr>
<th>Byte</th>
<th>Item</th>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>STX</td>
<td>02h</td>
<td>Start Transmission</td>
</tr>
<tr>
<td>1</td>
<td>STATUS</td>
<td>??h</td>
<td>Receiver Status Code</td>
</tr>
<tr>
<td>2</td>
<td>PACKET TYPE</td>
<td>55h</td>
<td>Response Packet Type</td>
</tr>
<tr>
<td>3</td>
<td>LENGTH</td>
<td>??h</td>
<td>Bytes of data after this byte (excluding checksum and ETX)</td>
</tr>
<tr>
<td>4</td>
<td>SUBTYPE</td>
<td>1 byte</td>
<td>Refer subtype values below</td>
</tr>
</tbody>
</table>

The supported subtypes are:
- 0: SV Flags
- 20: Generic SV Flags

<table>
<thead>
<tr>
<th>Last subtype byte + 1</th>
<th>CHECKSUM</th>
<th>?h</th>
<th>Checksum Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last subtype byte + 2</td>
<td>ETX</td>
<td>03h</td>
<td>End Transmission</td>
</tr>
</tbody>
</table>
The following table shows the additional records provided in Report Packet 55h when SV flags data is included:

<table>
<thead>
<tr>
<th>Byte</th>
<th>Item</th>
<th>Type</th>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>SAT TYPE</td>
<td>1 byte</td>
<td>0</td>
<td>GPS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>SBSA (WAAS, EGNOS, MSAS, etc.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>GLONASS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>Galileo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>QZSS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>BeiDou (pre-ICS SV numbering)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>Omnistar</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>BeiDou (ICD SV numbering)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>IRNSS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>BeiDou (with 1/2 phase correction on B1 signal from Geo SVs)</td>
</tr>
<tr>
<td>7</td>
<td>MODE</td>
<td>1 byte</td>
<td>0</td>
<td>Return SV flags for SAT TYPE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Reply to disable SV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>Reply to enable SV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>Not supported</td>
</tr>
<tr>
<td>8</td>
<td>Number of bytes (n) for each of the following fields</td>
<td>1 byte</td>
<td>1-?</td>
<td>Number of bytes in each of the following flags.</td>
</tr>
<tr>
<td></td>
<td>EPHemeris FLAGS</td>
<td>n bytes</td>
<td>? flag bits</td>
<td>Flags show availability of ephemeris, LSB = first PRN. Set to 1 when ephemeris is available.</td>
</tr>
<tr>
<td></td>
<td>Almanac FLAGS</td>
<td>n bytes</td>
<td>? flag bits</td>
<td>Flags show availability of almanac, LSB = first PRN. Set to 1 when almanac is available.</td>
</tr>
<tr>
<td></td>
<td>SV DISABLEd FLAGS</td>
<td>n bytes</td>
<td>? flag bits</td>
<td>Flags show disabled SVs, LSB = first PRN. Set to 1 when satellite is disabled.</td>
</tr>
<tr>
<td></td>
<td>SV UnHEALTHY FLAGS</td>
<td>n bytes</td>
<td>? flag bits</td>
<td>Flags show the health of satellites, LSB = first PRN. Set to 1 when satellite is unhealthy.</td>
</tr>
<tr>
<td></td>
<td>SV "IGNORE HEALTH"* FLags</td>
<td>n bytes</td>
<td>? flag bits</td>
<td>Not supported.</td>
</tr>
</tbody>
</table>

--------- End of Subtype 20 ---------
The following table shows the structure of the report packet containing the application file. All data in the packet flows from the data collector to the board.

<table>
<thead>
<tr>
<th>Byte</th>
<th>Item</th>
<th>Type</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>STX</td>
<td>1 (Char)</td>
<td>02h</td>
<td>Start transmission.</td>
</tr>
<tr>
<td>1</td>
<td>STATUS</td>
<td>1 (Char)</td>
<td>00h</td>
<td>Receiver status code.</td>
</tr>
<tr>
<td>2</td>
<td>PACKET TYPE</td>
<td>1 (Char)</td>
<td>64h</td>
<td>Command Packet 64h.</td>
</tr>
<tr>
<td>3</td>
<td>LENGTH</td>
<td>1 (Char)</td>
<td>??h</td>
<td>Data byte count.</td>
</tr>
<tr>
<td>4</td>
<td>TRANSMISSION NUMBER</td>
<td>1 (Byte)</td>
<td>A Transmission Number is a unique transmission serial number ranging from 0-255, typically incrementing by 1 each time an application file is sent.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PAGE INDEX</td>
<td>1 (Byte)</td>
<td>Index number (0–255) assigned to the current page.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>MAXIMUM PAGE INDEX</td>
<td>1 (Byte)</td>
<td>Index number (0–255) assigned to the last page of the packet.</td>
<td></td>
</tr>
</tbody>
</table>

File Control Information Block:

<table>
<thead>
<tr>
<th>Byte</th>
<th>Item</th>
<th>Type</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>APPLICATION FILE SPECIFICATION VERSION</td>
<td>1 (Char)</td>
<td>03h</td>
<td>Ignored</td>
</tr>
<tr>
<td>8</td>
<td>DEVICE TYPE</td>
<td>1 (Char)</td>
<td>00h</td>
<td>Ignored</td>
</tr>
<tr>
<td>9</td>
<td>START APPLICATION FILE FLAG</td>
<td>1 (Char)</td>
<td>01h</td>
<td>Ignored</td>
</tr>
<tr>
<td>10</td>
<td>FACTORY SETTINGS FLAG</td>
<td>1 (Char)</td>
<td>00h</td>
<td>Ignored</td>
</tr>
</tbody>
</table>

Application File Records:

Supported records:
- General Controls (01h)
- Output message (07h)
- Antenna (08h)
- Static kinematic (0Ah)

Length+4 CHECKSUM CHAR ??h Checksum value
Length+5 CHAR 03h End transmission
Output Messages Record

The output message record selects the outputs for a specified serial port, the frequency of message transmissions, the integer second offset from the scheduled output rate, and output-specific flags.

The following table shows the additional records provided when the output message record is included with Command Packet 64h.

<table>
<thead>
<tr>
<th>Byte</th>
<th>Item</th>
<th>Type</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>RECORD TYPE</td>
<td>1 (Char)</td>
<td>07h</td>
<td>Output Message Record.</td>
</tr>
<tr>
<td>1</td>
<td>RECORD LENGTH</td>
<td>1 (Char)</td>
<td>04h, 05h or 06h</td>
<td>Number of bytes in the record, excluding bytes 0 and 1. The number of bytes is dependent on the number of output specific flags.</td>
</tr>
<tr>
<td>2</td>
<td>OUTPUT MESSAGE TYPE</td>
<td>1 (Char)</td>
<td>See Output message type byte values Type of message or packet:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 00h: Turns off all outputs on all ports</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• FFh: Turns off all outputs on a given port</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 0Ah: GSOF output</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• NMEA: Supported messages are: GGA (byte value: 6), GGK (7), ZDA (8), GSOF (10), VTG (12), GST (13), GSV (18), MDT (31), RDT (32), VRSSGA (37), GSA (38), RMC (40), GLL (44), GRS (45), GBS (49), GNS (50), DTM (51), MSS (53).</td>
</tr>
<tr>
<td>3</td>
<td>PORT INDEX</td>
<td>1 (Char)</td>
<td>See port number values Port number values:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Port 1: External serial port A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Port 2: Serial port B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Port 3: Serial port D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Port 16: USB port C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Port 21: TCP/IP port P (client)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Port 22: TCP/IP port Q (client)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Port 23: TCP/IP port I (server)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Port 24: TCP/IP port F (server)</td>
</tr>
<tr>
<td>4</td>
<td>FREQUENCY</td>
<td>1 (Char)</td>
<td>See Frequency byte values Frequency byte values (see table below).</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>OFFSET</td>
<td>1 (Char)</td>
<td>00h–FFh</td>
<td>N/A</td>
</tr>
<tr>
<td>6-7</td>
<td>OUTPUT SPECIFIC</td>
<td></td>
<td></td>
<td>These flags are dependent upon the output message type, byte 2. One or two flag bytes can be sent, but 2 are always stored in the board. For a GSOF output, the first flag is the GSOF subtype</td>
</tr>
<tr>
<td></td>
<td>FLAGS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Byte Value</td>
<td>Meaning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Off</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10 Hz = 100 milliseconds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5 Hz = 200 milliseconds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1 Hz = 1 second</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2 seconds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5 seconds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10 seconds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>30 seconds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>60 seconds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>5 minutes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10 minutes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2 Hz = 500 milliseconds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>15 seconds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>20 Hz = 50 milliseconds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Triggered</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>50 Hz = 20 milliseconds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>100 Hz = 10 milliseconds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>255 = 0xff</td>
<td>Once</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Antenna Record

The antenna record identifies the antenna type and the true vertical height of the antenna above the ground mark.

The following table shows the additional records provided when the antenna record is included with Command Packet 64h.

<table>
<thead>
<tr>
<th>Byte</th>
<th>Item</th>
<th>Type</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>RECORD TYPE</td>
<td>1 (Char)</td>
<td>08h</td>
<td>Reference Node record.</td>
</tr>
<tr>
<td>1</td>
<td>RECORD LENGTH</td>
<td>1 (Char)</td>
<td>2Ch</td>
<td>Number of bytes in record, excluding bytes 0 and 1.</td>
</tr>
<tr>
<td>2–9</td>
<td>ANTENNA HEIGHT</td>
<td>8 (Double)</td>
<td>Meters</td>
<td>Vertical height of antenna, in meters.</td>
</tr>
<tr>
<td>10–11</td>
<td>ANTENNA TYPE</td>
<td>2 (Short)</td>
<td>See Antenna type byte values below.</td>
<td>Defines the type of antenna connected to the receiver.</td>
</tr>
<tr>
<td>12</td>
<td>RESERVED</td>
<td>1 (Char)</td>
<td>00h</td>
<td>Reserved (set to zero).</td>
</tr>
<tr>
<td>13</td>
<td>MEASUREMENT METHOD</td>
<td>1 (Char)</td>
<td>00h = Bottom of antenna mount FFh = Antenna phase center</td>
<td></td>
</tr>
<tr>
<td>14–45</td>
<td>ANTENNA SERIAL NUMBER</td>
<td>32 (Char)</td>
<td>Space for 31 characters + null terminator</td>
<td></td>
</tr>
</tbody>
</table>

The following table provides byte values for the information in the antenna record.

Antenna type byte values:

<table>
<thead>
<tr>
<th>Byte value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec</td>
<td>Hex</td>
</tr>
<tr>
<td>85</td>
<td>55h</td>
</tr>
<tr>
<td>86</td>
<td>56h</td>
</tr>
<tr>
<td>184</td>
<td>B8h</td>
</tr>
<tr>
<td>185</td>
<td>B9h</td>
</tr>
<tr>
<td>266</td>
<td>01h 0Ah</td>
</tr>
<tr>
<td>309</td>
<td>01h 35h</td>
</tr>
<tr>
<td>349</td>
<td>01h 5Dh</td>
</tr>
<tr>
<td>403</td>
<td>01h 93h</td>
</tr>
<tr>
<td>404</td>
<td>01h 94h</td>
</tr>
<tr>
<td>406</td>
<td>01h 96h</td>
</tr>
</tbody>
</table>
For a complete and up-to-date list of antennas, go to www.trimble.com/trimbleconfiguration_ts.asp and install the Trimble Configuration Utility. Then open the Antenna.INI file (the default location is C:\Program Files\Common Files\Trimble\Config\antenna.ini) with an ASCII viewer to find antennas by name and their antenna type value.

Static/Kinematic Record

The static/kinematic record identifies the antenna type and the true vertical height of the antenna above the ground mark.

The following table shows the additional records provided when the static/kinematic record is included with Command Packet 64h.

<table>
<thead>
<tr>
<th>Byte</th>
<th>Item</th>
<th>Type</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>RECORD TYPE</td>
<td>1(Char)</td>
<td>0Ah</td>
<td>Static/Kinematic record.</td>
</tr>
<tr>
<td>1</td>
<td>RECORD LENGTH</td>
<td>1(Char)</td>
<td>01h</td>
<td>Number of bytes in record, excluding bytes 0 and 1.</td>
</tr>
<tr>
<td>2</td>
<td>STATIC/KINEMATIC MODE</td>
<td>1(Char)</td>
<td>See Static/kinematic byte values below. Configures receiver for static or kinematic operation.</td>
<td></td>
</tr>
</tbody>
</table>

Static/kinematic byte values:

<table>
<thead>
<tr>
<th>Byte value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec</td>
<td>Hex</td>
</tr>
<tr>
<td>0</td>
<td>00h</td>
</tr>
<tr>
<td>1</td>
<td>01h</td>
</tr>
<tr>
<td>2–255</td>
<td>02h–FFh</td>
</tr>
</tbody>
</table>
65h: GETAPPFILE

A specific application file can be downloaded from the board by sending the Command Packet 65h. If the request is valid, a copy of the application file is downloaded to the remote device in Report Packet 64h. The board can store multiple application files (including a default application file, containing the factory default parameter settings) in the application file directory. Each application file is assigned a number to give the file a unique identity within the directory. The application file containing the factory default values is assigned a system file index code of zero (0).

The following table shows the packet structure. All data in the packet flows from the data collector to the board. For more information, see Command 64h.

<table>
<thead>
<tr>
<th>Byte</th>
<th>Item</th>
<th>Type</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>STX</td>
<td>1 (Char)</td>
<td>02h</td>
<td>Start transmission</td>
</tr>
<tr>
<td>1</td>
<td>STATUS</td>
<td>1 (Char)</td>
<td>Receiver status byte</td>
<td>Receiver status indicator.</td>
</tr>
<tr>
<td>2</td>
<td>PACKET TYPE</td>
<td>1 (Char)</td>
<td>65h</td>
<td>Command Packet Type</td>
</tr>
<tr>
<td>3</td>
<td>LENGTH</td>
<td>1 (Char)</td>
<td>Packet structure</td>
<td>Data byte count.</td>
</tr>
<tr>
<td>4–5</td>
<td>SYSTEM FILE INDEX</td>
<td>2 (Short)</td>
<td>0–n</td>
<td>Unique number (ID code) assigned to each of the application files stored in the application file directory. Only 1 is accepted.</td>
</tr>
<tr>
<td>6</td>
<td>CHECKSUM</td>
<td>1 (Char)</td>
<td>See Packet structure</td>
<td>Checksum value.</td>
</tr>
<tr>
<td>7</td>
<td>ETX</td>
<td>1 (Char)</td>
<td>03h</td>
<td>End transmission</td>
</tr>
</tbody>
</table>
6Eh: BREAKRET

Response Packet 6Eh is sent in response to the Command Packet 6Fh. Response Packet 6Eh returns the board’s current serial port communication parameters, board version numbers and dates, and communication protocol settings when the remote device sends a 250 millisecond (minimum duration) break sequence.

Sending a Break Sequence:

To initiate a break sequence return, the following events need to occur:

1. The remote device sends a break sequence with a minimum duration of 250 milliseconds to the board. For example, pressing [Ctrl] + [Break] from an office computer is equivalent to sending a break sequence.
2. The board detects the break signal and responds by setting the communication parameters for the serial port to 9600 baud, 8 data bits, no parity, and 1 stop bit.
3. The board outputs an Identity Message through the serial port to the remote device.
The following table describes the structure of Report Packet 6Eh

<table>
<thead>
<tr>
<th>Byte</th>
<th>Item</th>
<th>Type</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>STX</td>
<td>1 (Char)</td>
<td>?ih</td>
<td>Start transmission.</td>
</tr>
<tr>
<td>1</td>
<td>STATUS</td>
<td>1 (Char)</td>
<td>??h</td>
<td>Board status indicator</td>
</tr>
<tr>
<td>2</td>
<td>PACKET TYPE</td>
<td>1 (Char)</td>
<td>6Eh</td>
<td>Report Packet Type.</td>
</tr>
<tr>
<td>3</td>
<td>LENGTH</td>
<td>1 (Char)</td>
<td>??h</td>
<td>Data byte count.</td>
</tr>
<tr>
<td></td>
<td>PRODUCT</td>
<td>(Chars)</td>
<td>Comma-delimited ASCII string</td>
<td>Comma-delimited ASCII string indicating the receiver product family name.</td>
</tr>
<tr>
<td></td>
<td>PORT SETTING</td>
<td>(Chars)</td>
<td>Comma-delimited ASCII string</td>
<td>Comma-delimited ASCII string indicating the serial port settings and the break sequence acknowledgment code.</td>
</tr>
<tr>
<td></td>
<td>PORT STATUS</td>
<td>(Chars)</td>
<td>FIX” / “ADJ”</td>
<td>FIX: Port settings cannot be changed. ADJ: Port settings can be changed.</td>
</tr>
<tr>
<td></td>
<td>VERSION</td>
<td>(Chars)</td>
<td>Comma-delimited ASCII string</td>
<td>Comma-delimited ASCII string indicating the software version number and version release date.</td>
</tr>
<tr>
<td></td>
<td>COMM PROTOCOL</td>
<td>(Chars)</td>
<td>Comma-delimited ASCII string</td>
<td>Comma-delimited ASCII string indicating the communication protocols supported on serial port.</td>
</tr>
<tr>
<td></td>
<td>SERIAL NUMBER</td>
<td>(Chars)</td>
<td>Comma-delimited ASCII string</td>
<td>Comma-delimited ASCII string indicating the board serial number.</td>
</tr>
<tr>
<td></td>
<td>NAME (optional)</td>
<td>(Chars)</td>
<td>Comma-delimited ASCII string</td>
<td>Comma-delimited ASCII string indicating the board name and serial number.</td>
</tr>
<tr>
<td></td>
<td>IP ADDRESS</td>
<td>(Chars)</td>
<td>Comma-delimited ASCII string</td>
<td>Comma-delimited ASCII string indicating the IP address of the board. If no IP address is assigned or set, 0.0.0.0 is returned.</td>
</tr>
<tr>
<td></td>
<td>WLANIP (optional)</td>
<td>(Chars)</td>
<td>Comma-delimited ASCII string</td>
<td>Comma-delimited ASCII string indicating the receiver Wireless LAN IP address. If no IP address is assigned or set, 0.0.0.0 is returned.</td>
</tr>
<tr>
<td></td>
<td>CORE VER</td>
<td>(Chars)</td>
<td>Comma-delimited ASCII string</td>
<td>Comma-delimited ASCII string indicating the board firmware version number.</td>
</tr>
<tr>
<td></td>
<td>CHECKSUM</td>
<td>1 (Char)</td>
<td>See Packet structure</td>
<td>Checksum value.</td>
</tr>
<tr>
<td></td>
<td>ETX</td>
<td>1(Char)</td>
<td>03h</td>
<td>End transmission.</td>
</tr>
</tbody>
</table>
504

DCOL Commands & GSOF Messages

6Fh: BREAKREQ

Command Packet 6Fh requests the board's current serial port communication parameters, receiver version numbers and dates, and communication protocol settings. The board responds by sending the data in the Report Packet 6Eh.

All data in the packet flows from the data collector to the board.

<table>
<thead>
<tr>
<th>Byte</th>
<th>Item</th>
<th>Type</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>STX</td>
<td>1 (Char)</td>
<td>02h</td>
<td>Start transmission.</td>
</tr>
<tr>
<td>1</td>
<td>STATUS</td>
<td>1 (Char)</td>
<td></td>
<td>See Receiver status byte</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Receiver status indicator.</td>
</tr>
<tr>
<td>2</td>
<td>PACKET TYPE</td>
<td>1 (Char)</td>
<td>6Fh</td>
<td>Command packet 6Fh.</td>
</tr>
<tr>
<td>3</td>
<td>LENGTH</td>
<td>1 (Char)</td>
<td>00h</td>
<td>Data byte count.</td>
</tr>
<tr>
<td>4</td>
<td>CHECKSUM</td>
<td>1 (Char)</td>
<td></td>
<td>See Packet structure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Checksum value.</td>
</tr>
<tr>
<td>5</td>
<td>ETX</td>
<td>1 (Char)</td>
<td>03h</td>
<td>End transmission.</td>
</tr>
</tbody>
</table>
GSOF Messages

The description of the GSOF messages supported by the MB-Two is available online by clicking on the links below:

- GSOF messages overview
- 1 Position Time
- 2 Lat Lon Height
- 3 ECEF Position
- 9 PDOP Info
- 11 Position VCV Info
- 12 Position Sigma Info
- 16 Current UTC Time
- 38 Position Type Information
- 33 All SV Brief Info

NOTE: GSOF is the acronym for “General Serial Output Format”.
Chapter 10. Appendices

MB Loader Software Utility for Upgrades

MB Loader is a software tool provided in the evaluation kit. Use MB Loader software to:
1. Upgrade the board firmware
2. Install new firmware options
3. Validate RTX subscription.
4. Read the warranty expiration date of the board.

Installing MB Loader

MB Loader can also be downloaded from:

The install file is an exe file. Simply double-click on this file to start installation. Follow the instructions on the screen to complete the installation.

Getting Started With MB Loader

MB Loader will use either a serial (RS232), Bluetooth or USB connection to communicate with the board. USB is recommended.
1. Connect your computer to the board using a USB connection.
2. Run MB Loader on your computer.
3. Select the computer’s port ID used to communicate with the board. This port ID should correspond to the computer’s USB port.

 NOTE: An easy way to identify which port ID on your computer is the USB port is to run MB Loader first without the USB connection and read the list of available ports in MB Loader. After restoring the USB connection with the board, check that list again. An extra port ID will then be listed, being the one assigned to the USB port. Select that port. (You don’t need to define a baud rate for a USB port.)

4. To upgrade board firmware, install a new firmware option or validate a Trimble RTX subscription, see sub-sections below.
Upgrading Board Firmware

You are not allowed to upgrade a board if the startup protection is active or if the board is operated with an in-progress or expired validity period.

Firmware upgrades will be downloaded from:

Upgrades are delivered in the form of compressed ".tar" files. The name of the ".tar" file, as well as the step-by-step upgrade procedure will be given in the accompanying Release Note.

Unless otherwise specified in the Release Note attached to the upgrade package, follow the instructions below to complete the upgrade of your board:
1. Follow the first three steps described in Getting Started With MB Loader on page 507.
2. Click Upgrade. Wait until MB Loader has detected the board.
4. Select the file and click Open. MB Loader then provides information on the currently installed firmware.
5. When you are ready, click on the Update button.
6. Let the board proceed with the upgrade (a status window is displayed showing a progress bar). Take care not to turn off the board while the upgrade is in progress.
7. After successful completion of the upgrade, click Close to close the status window. Check that the new firmware is now installed (version and date displayed in the MB Loader main window).
8. Click Close again, then Exit to quit MB Loader.

Upgrading Board Firmware Using a USB Memory Stick

This is another nice way to upgrade the firmware. The board should be installed on the evaluation kit.

You need to use a computer running AshCom, a USB mass storage key (memory stick), a USB OTB cable and the
$PASHS,UPL,UPG proprietary command (see also UPL, UPG: Upgrading the Receiver Firmware from FTP on page 314).

The upgrade procedure is as follows:

- Copy the upgrade file (MB2_upgrade_vx.x.tar) to the memory stick.
- Connect the memory stick to the USB OTG cable.
- Connect the other end of the USB OTG cable to the evaluation kit.
- On your computer, from AshCom’s command box, send this command to the board:

 \$PASHS,UPL,UPG

 The board will first return an acknowledge message, then a reboot message:

 \$PASHR,ACK*3D
 \$PASHR,UPL,REBOOT,MB2_upgrade_vx.X.tar*<checksum>

 This starts the upgrade. Note that the second message may appear more than once during the procedure.

When the upgrade is complete and successful, the board returns the following line:

 \$PASHR,UPL,OK,MB2_upgrade_vx.X.tar*<checksum>

MB Loader can be used to query the Trimble database for the warranty expiration date of your GNSS receiver. (After a receiver warranty has expired, remember receiver firmware upgrades are no longer free of charge.)

You don’t need to have your receiver connected to MB Loader to read its warranty expiration date. Just enter its type and serial number and MB Loader will return this information to you, provided there is an active Internet connection on your computer, and your receiver is known to the database.

- Run MB Loader on your computer.
- Click on Warranty
- Select the type of your receiver and enter its serial number
- Click on Compute. MB Loader returns the warranty expiration date in a field underneath the Compute button.

Additionally, MB Loader generates a proprietary command that you can run in your receiver if you want to be sure your receiver has the correct warranty expiration date in memory. Carefully write down this command

Use AshCom to apply this command to the board.
NOTE: When upgrading the board firmware using a computer with an Internet connection, be aware MB Loader will at the same time automatically check the warranty expiration date of your receiver. MB Loader will ask you if it can update this date if it is found wrong.

Base Antenna Issues

The firmware has to deal internally with positions tagged to different points on the antenna:
- The L1 Phase Center (PC1)
- The Antenna Reference Point (ARP)
- The ground mark, or Survey Point (SPT)

By default, the software assumes that PC1, ARP and SPT are the same point.

Through the $PASHS,POS command, you can enter the exact position of the base and tell the firmware if it is tagged to PC1, ARP or SPT. The position you enter through this
command is the one that will be transmitted to rovers, along with RTK differential messages.

To allow the firmware to determine the position of the other two points, starting from the one you enter, antenna phase offset parameters are required. These parameters include antenna height, slant measurement and radius for SPT. ARP and SPT are related to each other through commands $PASHS,ANH and $PASHS,ANP.

PC1 and ARP are related to each other via the Phase Center Offset table (PCO table), referring to the specified antenna name.

Whenever a position is entered using $PASHS,POS, the firmware re-calculates the positions of the other two points, using the current antenna name, as entered using the $PASHS,ANP,OWN command. If the antenna name is unknown (the antenna name field has been left blank), then the firmware assumes that the three points (PC1, ARP, SPT) are physically the same point in space.

Whenever you change the antenna name, using $PASHS,ANP,OWN, or antenna parameters, using $PASHS,ANP,<name>,<parameters>, the firmware re-calculates the other two points, keeping the user-entered position unchanged. For example, if the position entered through $PASHS,POS is that of PC1, then ARP will be re-calculated. Conversely, PC1 will be re-calculated if the entered position is that of the ARP.

Depending on the protocol and message set used, the transmitted reference position will be tagged to a specific point. See table below.

<table>
<thead>
<tr>
<th>Message Type</th>
<th>PC1</th>
<th>ARP</th>
<th>SPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTCM2.3 messages 3+22</td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTCM2.3 message 24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTCM3.1 messages 1005 or 1006</td>
<td></td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>CMR</td>
<td></td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>ATOM,RNX</td>
<td></td>
<td></td>
<td>•</td>
</tr>
</tbody>
</table>

All the raw and differential data the firmware generates are always fully consistent with the reference position and the antenna name.
Rover Antenna Issues

Antenna information is vital for RTK operation, because not only does it contain the information for PC1-ARP transformation, but also the PC2 offset (PC2= L2 Phase Center) and the PCV (Elevation Dependent Phase Center Variations). Not making this information available to the rover may lead to a noticeable degradation of the position determination or the inability to reliably fix the ambiguities. Since both rover and base data are involved in RTK operation, in which single-differencing is performed (i.e. subtracting base correction from rover data), it is essential that the parameters of both the reference antenna (REF) used at the base and the rover antenna (OWN) be known to the rover. As the internal RTK engine always works on the PC1 position, any position received by the differential processor will be transformed to PC1, using base antenna parameters. Base antenna parameters are retrieved from hard-coded or user-defined antenna lists, using the antenna name decoded from the differential stream.

Unfortunately, only a few protocols provide the antenna name. These are listed below:
- RTCM2.3 message type 23
- RTCM3.1 message types 1007, 1008 and 1033
- Set of ATOM ATR messages

If the name of the antenna used at the base (reference antenna) is not available in the differential stream, you should use the $PASHS,ANP,REF command in the rover to specify that name. Since this command does not carry a default reference antenna name (by default, the corresponding field is empty), the rover will assume that PC1, PC2 and ARP at the base are all the same point in space, and the elevation-dependent biases are all zero. Besides, the rover will use either the entered or received reference antenna name, whichever is available last.

Even if the differential stream conveys a PC1-tagged position, which is needed for RTK, the antenna name remains a fundamental parameter, especially if the reference antenna has a noticeable L1-L2 phase center offset and/or a noticeable PCV.
“Virtual Antenna” Concept

Experience has shown that a lot of rovers from other manufacturers do not know the PCO parameters of the antennas used by our base receivers (PCO= Phase Center Offset). As a result, these rovers cannot fully benefit from the streams of reference data delivered by our bases. However, as there are a few antennas the names of which are well known to most vendors (e.g. ADVNULLANTENNA), we implemented a special firmware feature allowing the owner of a base to modify the complete flow of raw and differential data, as if they had been collected by a well known antenna, rather than the one actually used. This summarizes the concept of “virtual antenna”.

To enable this feature in a base, you should specify an antenna name for the truly used reference antenna (OWN), as well as a virtual antenna name (OUT) using the $PASHS, ANP, OUT command. Looking up the antenna name in the hard-coded or user-defined list of antennas, the base will then be able to make the following corrections:

- Virtual ARP coordinates= True ARP coordinates.
- Virtual PC1 coordinates: Deduced from the true ARP coordinates and the antenna parameters retrieved from the virtual (OUT) antenna name.
- Raw data: Adjusted to match the virtual antenna, i.e. L1 data will be centered on virtual PC1 and L2 data on virtual PC2. The adjusted raw data include both code and carrier L1 and L2, GPS and GLONASS.

Every time you modify any vital parameter through $PASHS, POS or $PASHS, ANP, the firmware will do the following automatically:

- Re-calculating the true ARP and/or the true PC1, using the data from the POS and OWN antenna names
• Calculating virtual PC1, using the true ARP and the data from the antenna name
• Adjusting raw data using data from the OWN and OUT antenna names

This mechanism guarantees the consistency of the position, observables/corrections and antenna name transmitted, regardless of the differential protocol and message set used. This leads to a rover being able to calculate a correct RTK position, provided it has been able to decode the antenna name provided in the differential stream (or use the antenna name entered through the $PASHS,ANP,REF command) and retrieve the parameters of this antenna from its list of antenna names.

Antenna Height Transformations

The entered reference position may be defined as:

• The position of the surveyed point (SP),
• The position of the Antenna Reference Point (ARP).
• The position of the antenna Phase Center.

The ground mark is defined as the vertical projection of the ARP to the ground.

The board firmware must be able to convert the originally entered position, first into ARP position, and then into L1 phase center position. To determine the ARP position, the firmware uses the data entered through either the ANT or ANH command, whichever was run last, to perform the required conversions.
• If the ANH command was the last run, the firmware will use the entered antenna height \(c_2 \) to determine the ARP position, expressed in local ENU coordinates:

\[
\text{ARP(North)} = \text{GM(North)}
\]

\[
\text{ARP(East)} = \text{GM(East)}
\]

\[
\text{ARP(Up)} = (\text{GM(Up)} + c_2)
\]

• If the ANT command was the last run, the firmware will use the entered parameters \(f_1, f_2 \) and \(f_3 \) to determine the ARP position, expressed in local ENU coordinates:

\[
\text{ARP(North)} = \text{GM(North)}
\]

\[
\text{ARP(East)} = \text{GM(East)}
\]

\[
\text{ARP(Up)} = \text{GM(Up)} + \left\lfloor \sqrt{f_1^2 - f_2^2} \right\rfloor + f_3
\]

Remember the vertical offset \(f_3 \) is entered as a negative value if the SHMP is above the ARP. It is otherwise positive.

Warning! The value of \(f_1 \) is physically limited to 99.9999 meters but may be transmitted as a lesser value (for example, in RTCM3 format, the maximum allowed value is 6.5535 meters).

With a known antenna name, the APC (Antenna Phase Center) positions for both L1 and L2 may be deduced from the ARP, using L1 and L2 3D offsets available from the hard-coded IGS antenna table:

\[
\text{APC(North)}_{L1} = \text{ARP(North)} + \text{L1Offset(North)}
\]

\[
\text{APC(East)}_{L1} = \text{ARP(East)} + \text{L1Offset(East)}
\]

\[
\text{APC(Up)}_{L1} = \text{ARP(Up)} + \text{L1Offset(Up)}
\]

\[
\text{APC(North)}_{L2} = \text{ARP(North)} + \text{L2Offset(North)}
\]

\[
\text{APC(East)}_{L2} = \text{ARP(East)} + \text{L2Offset(East)}
\]

\[
\text{APC(Up)}_{L2} = \text{ARP(Up)} + \text{L2Offset(Up)}
\]

How a Rover Reacts Dynamically to a Change of Base ID or Antenna Name

- Whenever the rover decodes a new base ID in the differential stream, all base-dependent parameters are reset to their default state in the rover. Through this reset,
the default antenna name is made unknown (the
corresponding field is made empty). This way, no
previously received antenna name or reference position
can be used.
• While the base ID is kept unchanged, a change of protocol
will not cause any reset. The new position received
through the new protocol will be processed normally, just
as a new message including the reference position.
• Whenever a rover decodes a new antenna name, or a new
antenna name is entered through the appropriate $PASH
command, PC1 is re-calculated (if position received is
tagged to ARP). The antenna parameters are also retrieved
from the list of antennas for use in the processing run by
the RTK engine.
• With a base declared as “static”, any change in the
coordinates of the reference position provided by the
differential stream will be interpreted by the rover as a
true change in the base installation, or a change in the
base setup.
If however the difference between the new and old
coordinates are greater than 10 km, the RTK engine is
reset (similar to a base ID change). If the difference is
between 1 km and 10 km, only the baseline estimate is
reset. The baseline is otherwise simply adjusted, without
any RTK reset.
• With the RTCM2.3 protocol, the reference position can be
provided either in message type 3+22 or message type
24. This means the reference position received is either
tagged to PC1 or ARP. Usually the positions provided by
message types 3+22 and 24 refer to the same antenna
and their relationship is as described in the antenna PCO
table.
If both messages are received, message type 3+22 (PC1-
tagged position) has the priority. If message type 24 is
received after message type 3+22, it will therefore be
rejected, unless the difference between the two positions
is greater than 25 meters.

Useful Definitions

Satellite Status

A GNSS satellite is considered to be visible if the
corresponding healthy almanac is available, a receiver
position is available, topo data for the satellite can be
computed (at least from the almanac) and the satellite is above the horizon.

In some situations, the receiver can track a satellite below local horizon. These satellites are also considered as visible. All visible satellites are reported in NMEA GSV messages and ATM,PVT,SVS blocks. Each visible satellite must report valid elevation and azimuth.

The receiver saves almanac data for all GNSS's. All saved almanac data may be deleted using the appropriate INI command. However, there also exists default almanac data for geostationary satellites (SBAS, GEO BDS) that cannot be cleaned up. These are seen as data staying valid over time, which cannot be changed unless you perform a firmware update.

So if GLONASS is disabled for tracking (e.g. by setting $PASHS,GLO,OFF), this does not mean that GLONASS satellites are no longer visible. On the contrary, these satellites may stay visible (although not tracked) because command $PASHS,GLO,OFF does not clean up the GLONASS almanac.

A visible GNSS satellite is reported to be **tracked** if the corresponding DLL (Delay Locked Loop) is locked for at least one satellite signal. Generally, the fact that a satellite is tracked does not necessarily mean that it can provide the corresponding raw data (pseudo-range, Doppler and carrier phase observables).

A tracked satellite is always associated with a corresponding SNR reported in NMEA GSV messages and ATM,PVT,SVS blocks.

A visible satellite that is not tracked has a "zero" SNR value. NMEA messages always report an SNR value, usually for the highest-frequency signal of a given satellite (L1 for GPS, SBAS and GLONASS, E1 for Galileo, B1 for BeiDou). The ATM,PVT,SVS block reports SNR values for all the tracked signals from a given satellite.

The raw/differential data from a tracked satellite can be available internally but not output from the receiver if these data do not meet some quality requirements.

Raw data can be available via different groups of messages, e.g. standardized RTCM-3 data and proprietary ATM,RNX data.

A tracked GNSS satellite is reported to be **used** in the internal PVT process if at least one observable (pseudo-range, Doppler or Carrier phase) from at least one signal from a given satellite took part in the position epoch update. A satellite may be
tracked and its raw data output while not being used in the internal PVT process. Conversely, the raw data from a satellite can be disabled for output, while being used in the internal PVT process. The information about satellite usage status is available via the ATM,PVT message as well as its six ASCII counterparts (i.e. SGP, SGL, SGA, SBD, SSB, SQZ).

If not said explicitly, used refers to the position reported for the primary antenna. It must be noted that with platform positioning (M-sensor, P-cube concept), the PVT process includes computing different positions, baselines, vectors and angles. Generally, the same satellite can be used in one type of P-cube solution, and NOT in another type of P-cube solution. When and where required, the concerned PVT estimate is clearly specified when reporting a usage status.

About SBAS ranging data (code and carrier) used in position computation, you should know these mostly appear to be controlled by quite an instable clock. For this reason, they are not used in position computation, except in 1-Hz time-tagged RTK where instable SBAS clock is compensated for by using Single Difference (SD). On the contrary, SBAS code can be used in position computation, but only at integer seconds. As a result, SBAS data are used at integer seconds only, not at fractional seconds. That’s why the SBAS usage flag changes regularly.

When used in differential or RTK mode, the receiver can mix corrected and uncorrected data in the internal PVT process. For example a satellite may be marked as used while there are no corrections received for this satellite. Conversely, a satellite for which corrections are available may not be used in the internal PVT process. In addition, and in RTK only, a satellite will not be reported as used if no corrections for this satellite are received from the base. And because of some specificity in RTK, a satellite may temporarily be set as used while being reported as being not tracked.

The table below shows what the RF bands actually are when the reported names are L1, L2, L3 and L5 (QZSS and SBAS are assumed to be part of GPS). Note that generally, L5 covers both L5 and L3 sub-bands.

<table>
<thead>
<tr>
<th>#</th>
<th>RF ID</th>
<th>Conditional Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GPS L1/GAL E1</td>
<td>L1</td>
</tr>
<tr>
<td>2</td>
<td>GPS L2</td>
<td>L2</td>
</tr>
<tr>
<td>3</td>
<td>GPS L5/GAL E5a</td>
<td>L5</td>
</tr>
<tr>
<td>4</td>
<td>GLO G1</td>
<td>L1</td>
</tr>
<tr>
<td>5</td>
<td>GLO G2</td>
<td>L2</td>
</tr>
</tbody>
</table>
Of the different signals from different constellations pertaining to a specific sub-band, the board selects the one with the best SNR and reports it in the following NMEA messages as the sole SNR for the sub-band: SGP, SGL, SGA, SBD, SSB, SQZ. Except when tracking GPS L1P(Y) and GPS L2P(Y), all signals from the same GNSS band present very similar SNRs, so there is no special need indicating which signal the reported SNR corresponds to.

Satellite Usage as Reported in NMEA and ATOM Messages

<table>
<thead>
<tr>
<th>Usage Status</th>
<th>Reported as a letter in NMEA messages</th>
<th>Reported as a number in ATOM messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satellite is not tracked</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Code and carrier/Doppler data used</td>
<td>U</td>
<td>1</td>
</tr>
<tr>
<td>Code only data used</td>
<td>U</td>
<td>2</td>
</tr>
<tr>
<td>Carrier/Doppler only data used</td>
<td>U</td>
<td>3</td>
</tr>
<tr>
<td>Reserved</td>
<td>(blank)</td>
<td>4</td>
</tr>
<tr>
<td>Differential corrections problem</td>
<td>D</td>
<td>7</td>
</tr>
<tr>
<td>Smoothing counter is less than mask</td>
<td>S</td>
<td>10</td>
</tr>
<tr>
<td>No integer millisecond computed</td>
<td>P</td>
<td>12</td>
</tr>
<tr>
<td>Suspicious range problems detected</td>
<td>Q</td>
<td>13</td>
</tr>
<tr>
<td>Channels data detected as invalid</td>
<td>W</td>
<td>14</td>
</tr>
<tr>
<td>Unknown usage status</td>
<td>(blank)</td>
<td>15</td>
</tr>
<tr>
<td>No navigation data for this satellite</td>
<td>E</td>
<td>16</td>
</tr>
<tr>
<td>Satellite is below elevation mask</td>
<td>M</td>
<td>17</td>
</tr>
<tr>
<td>Satellite is marked as unhealthy in ephemeris</td>
<td>H</td>
<td>18</td>
</tr>
<tr>
<td>Satellite was intentionally disabled using $PASHS,xxx,USE command</td>
<td>I</td>
<td>20</td>
</tr>
<tr>
<td>URA in ephemeris is not acceptable</td>
<td>B</td>
<td>21</td>
</tr>
<tr>
<td>Satellite is unhealthy according to almanac</td>
<td>Z</td>
<td>22</td>
</tr>
<tr>
<td>Too low SNR</td>
<td>L</td>
<td>23</td>
</tr>
<tr>
<td>Satellite suspected to be a ghost satellite</td>
<td>G</td>
<td>24</td>
</tr>
</tbody>
</table>
Correcting Status as Reported in NMEA and ATOM Messages

<table>
<thead>
<tr>
<th>Correcting Status</th>
<th>Reported as a letter in NMEA messages</th>
<th>Reported as a number in ATOM messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satellite is not tracked</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Satellite is not corrected</td>
<td>N</td>
<td>1</td>
</tr>
<tr>
<td>SBAS corrected</td>
<td>W</td>
<td>2</td>
</tr>
<tr>
<td>DGNSS corrected</td>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>RTK/RTX corrected (single-band)</td>
<td>S</td>
<td>4</td>
</tr>
<tr>
<td>RTK/RTX corrected (multi-band)</td>
<td>D</td>
<td>5</td>
</tr>
<tr>
<td>Reserved</td>
<td>T</td>
<td>6-14</td>
</tr>
<tr>
<td>Unknown correcting status</td>
<td>(blank)</td>
<td>15</td>
</tr>
</tbody>
</table>

Some other letters or figures may be reported, all indicating that satellites are not used in these cases.

Satellite Correcting Status as Reported in NMEA and ATOM Messages

Position Status

In most cases, the messages generated by a GNSS board appear at the output in a fixed order. The time preference list within each group tries to follow this concept: Position first, then observables, attributes last. There are however a few exceptions:

- Some messages are generated according to the “change” (e.g. ephemeris messages) or “event” (e.g. TTT) principle. These may not be tagged exactly to an epoch. That is why in some cases they can appear at unexpected locations in the output stream.
- LTN/ZDA goes earlier than GLL/GGA in the NME group. This is due to the highest importance given to latency and time-tag information in some applications.
- TT1/TT2/TT3 goes after RNX. This is due to the fact that TT1/TT2/TT3 messages contain time-tagged RTK results not synchronized with the receiver’s current time tag. Also, when the receiver is configured in time-tagged RTK mode, some messages can also show unusual output behavior depending on local delays caused by the data link.
All the positions the receiver generates in primary position messages refer to the “default” datum. This requires some clarifications.

The Cartesian position the receiver generates (e.g. in ATM,PVT message) is defined by:

- The primary GNSS selected
- The current datum realization used for broadcast ephemeris (now IGS05 on current epoch if GPS is primary)
- The datum of the reference position (applicable to DGNSS and RTK modes only).

Generally the receiver does not know a priori what the datum of the reference position is (this depends on the data provider in the local area). As a result, the standalone position a receiver generates is tagged to IGS05 (if GPS is primary). At the same time, the differential position is computed as the reference position (in whichever datum) plus the baseline estimate (IGS05 datum).

To date, the GNSS firmware can support GPS, GLONASS or BeiDou as the primary GNSS system (see $PASHS,PGS description). Once specified, the primary GNSS system defines a “default” receiver datum associated with the given GNSS system:

- WGS-84 (IGS05) if GPS is primary,
- PZ90.02 if GLONASS is primary
- CGCS2000 if BeiDou is primary

The three datums are quite close to each other, and yet with the following differences:

- Ellipsoid centers are about 0.5 meters apart
- Ellipsoid parameters are different

Also, the default BeiDou datum is even closer to the GPS default datum.

Different ellipsoid parameters means that a given cartesian position will be transformed into different geodetic coordinates, depending on which GNSS is used as primary. It is therefore the end user's responsibility to be sure that the expected ellipsoid center and parameters are used so that the receiver can provide correct position estimates. For the same purpose, the end user should also make sure the same GNSS primary system is used at the base and rover.

The receiver can accept some user positions and use them in internal algorithms. These are set using the POS command.
When entering these positions, the user must realize that these will be processed differently depending on which GNSS is used as primary. These positions are always entered as geodetic coordinates (lat, lon, alt) and it is the user's responsibility to make sure the entered coordinates are expressed in the selected primary GNSS.

In most cases, the entered positions are transformed into cartesian coordinates (so they can for example be inserted into the generated reference station message). Transformation parameters are different for GPS, GLO and BDS, so cartesian positions will be "primary GNSS" dependent.

Working in RTK rover mode, it is the end user's responsibility to inquire exactly what datum is used to express the received reference position and set the primary GNSS system accordingly (using PGS).

Working in RTK base mode, it is also the end user's responsibility to inquire what datum is used to express the generated (entered) reference position and set the primary GNSS system accordingly.

Working in some NTRIP Networks (e.g. SAPOS) transmitting the so-called coordinate transformation messages, the receiver can additionally compute the position in the local system/datum. This position is available via special blocks from the ATM,PVT message. So the user can get both “default” and "local” positions simultaneously via the ATM,PVT message.

The GNSS firmware applies the following default geoid model: NATO STANAG 4294 Navstar Global Positioning System (GPS) System Characteristics-ED 2.

This model is used to generate the geoid-ellipsoid separation value in GGA (and similar) messages, regardless of the primary GNSS system selected (PGS command).

The GNSS firmware applies the Magnetic table corresponding to model WMM-2005 (published 12/2004). This model is used for some position/velocity transformations applied in some NMEA messages.

The GNSS firmware applies the default ionosphere model (when no other models, e.g. SBAS, are available), extracted from the GPS navigation stream (called Klobuchar model).

The GNSS firmware applies proprietary troposphere models. By default, user positions reported in all messages are tagged to the antenna L1 phase center. Command ANR (for ANtenna Reduction) allows the receiver to tag all user positions to either the Antenna Reference Point or the Ground Mark. This
The TOP command does not affect reference positions generated in various correcting data streams. These positions may be tagged to either the L1 phase center or the ARP, as required by the standard used.

By default, the reported user positions are always the “best” positions, depending on the availability of correcting data at that time. The formal preference is the following (from best to worst):

- RTK
- DGNSS
- SBAS
- Standalone (autonomous)

PPP stands for “Precise Point Positioning”, which today is delivered by the RTX Trimble engine.

Using the TOP command, users can choose which level of position accuracy they wish to output.

Being of centimeter level accuracy, the reported RTK positions are very sensitive to the availability of supplementary data. They may leap by several centimeters following the change of the reference or local (own) antenna name (resulting in new PCO parameters).

The clock steering mechanism not only corrects receiver raw data, but also the reported position, for boards with high dynamics, when extrapolating it for up to 1 millisecond forward or backward.

About the Reported DOP Values

DOP figures always correspond to the satellites actually used in the position computation, i.e. they are consistent with the sat usage status. The reported DOPs are consistent with all the generated position messages referring to the same antenna/engine/correction.

DOP values will be reported even though the position may not be computed.

Any valid DOP greater than 99.9 is output as being equal to 99.9.

DOP values will not be output if they cannot be computed. Not delivering DOP values does not mean the position cannot be computed and vice versa.

Differential Positions

Differential positioning is the process of correcting local receiver data (or internal PVT engine states) using some data available from external sources.
Correcting data are divided into two groups:

- **Measurement Space (MS) corrections**
- **State Space (SS) corrections**

MS corrections are numbers that are simply added to the respective local measurement to cancel (or at least reduce) some systematic errors. A typical example of MS corrections is either DGNSS corrections (e.g. RTCM MT 1,31) or RTK corrections (e.g. RTCM-3 MT 1004,1012).

The primary attribute of MS corrections is the position (reference) they are tagged to. MS corrections usually serve a local area around the reference position. MS corrections can correspond to either a physical or virtual reference station. RTK network corrections (MAC, FKP) can be considered as augmentations of MS corrections to extend the area of applicability.

SS corrections are the estimates of particular errors affecting GNSS observations. SS corrections include satellite orbit and clock corrections, ionosphere corrections, satellite signal bias estimates and some others.

SS corrections are usually not tagged to any reference position, serve wider areas compared to MS corrections, but are not always global.

For example the ionosphere correction grid can be available only for some continents, like WAAS ionosphere correction, which is available over the USA only.

The typical example of SS corrections is SBAS and L-band. Unlike precise MS corrections, the current status of SS corrections does not allow receivers to determine centimeter level positions.

But the latest progress with the so-called PPP (Precise Point Positioning) solutions using precise, almost real-time IGS products will lead to centimeter level accuracies in the future.

Depending on the organization of the PVT engine, SS corrections can be applied differently. Our receivers transform SS corrections into MS corrections (and associated accuracy figures) referring to the receiver's current position. The receiver then applies these MS corrections to receiver observations.

One of the primary attributes of any differential position is differential age. Our GNSS firmware reports age (e.g. in GGA messages) as follows:

- For time-tagged RTK positions, it is always reported as zero.
• For Fast RTK and any MS DGNSS positions, age is the difference between position time tag and the time tag of the last decoded differential corrections. It must be emphasized that the last decoded differential corrections are not necessarily applied to the current position.

• For SS differential positions (e.g. SBAS), age is computed by proprietary exclusive formulas because a number of particular correcting data that take part in position determination are tagged to different times.

Time-Tagged RTK

When working with RTK MS corrections, our RTK receivers can output either time-tagged (TT) or Fast (FST) position/vector/angles estimates, using different messages.

TT output refers to a particular event that occurs when incoming RTK correcting data are decoded and processed inside the TT RTK engine. TT output can be irregular (data link blockage) and feature large latency (data link delays). At the same time, TT output provides the best performance in terms of accuracy.

FST output refers to receiver epochs. It is therefore independent of the arrival of the correcting data in the receiver. FST output is regular and features minimum possible latency. FST estimates can be degraded if some delay is introduced by the data link, increasing the age of corrections and adding error to FST estimates.

Baseline-related estimates can be divided into three groups:

- Position
- Vector
- Angles

In conventional RTK, these groups are related to each other by this simple formula:

\[\text{Position} = \text{Base} + \text{Vector} \]

\[\text{Angles} = \text{Vector azimuth and elevation} \]

Where **Base** is the reference position, provided that both **Base** and **Position** refer to the L1 antenna phase center.

In some applications, Position, Vector and Angles can have no tight relationship between each other, because generally different local and reference data are used to compute each of them.

To output position, vector and angles, we populate the existing POS, VCT and HPR messages. These messages always refer to the FST estimates. Also, all standard NMEA user messages (e.g. GGA, HDT) correspond to FST output.
In most cases, users do not need TT estimates.

Datum for SBAS Differential Positions

For ITRF, strictly speaking, there is no predefined ellipsoid at all. However, it is common practice to use the GRS 1980 ellipsoid for this purpose (there is even official approval for ETRF to do so). This ellipsoid is defined as follows:

- $A = 6378137 \text{ m}$
- $1/f = 298.257222101$

This ellipsoid (claimed as ITRF2000) has to be utilized for SBAS differential position.

Also, this ellipsoid has to be utilized if position is claimed to be provided in the ITRS05 (or ITRS2000) reference frame, and not in the WGS84.

Applying high accuracy real-time corrections requires knowledge and proper application of datum transformations. It is crucial that you understand the reference datum of correction sources so you can maximize the accuracy of your corrected GPS data.

The Trimble TerraSync™ 3.20 software can now log measurement data in terms of a single datum (WGS-84) thus minimizing the chances of any double datum transformations when exporting data—an implied transformation at time of data collection, and a further transformation at time of export in the GPS Pathfinder® Office software.
Transitioning from Ashtech DG14 or MB100 to Trimble MB-Two

This section provides a detailed comparison between Ashtech DG14, MB100 and MB-Two OEM boards in terms of operating parameters and output messages so that you can better control the transitioning from DG14 or MB100 to MB-Two.

General:

<table>
<thead>
<tr>
<th>General Parameters</th>
<th>DG14</th>
<th>MB100</th>
<th>MB-Two</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage Range</td>
<td>5 V DC ±5%</td>
<td>3 V DC</td>
<td>3.2 to 4.5 V DC</td>
<td></td>
</tr>
<tr>
<td>Antenna</td>
<td>1 GPS L1</td>
<td>2 GNSS</td>
<td>2 GNSS</td>
<td>Dual antenna for internal heading only</td>
</tr>
<tr>
<td>GPS L1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>SBAS L1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>GLONASS</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Galileo</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Beidou</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Coast Guard Beacon</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>DGPS Base & Rover</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>
Binary Messages:

<table>
<thead>
<tr>
<th>Binary Messages</th>
<th>DG14</th>
<th>MB100</th>
<th>MB-Two</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATOM Messages</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>RTCM RT3</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>CMR & CMR+</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>RTCM V2.3</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>RTK DBEN Rover</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>RTK DBEN Base</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>ATL</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>VTB</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>MCA</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Replaced with ATOM RNX</td>
</tr>
<tr>
<td>MBN</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Replaced with ATOM RNX</td>
</tr>
<tr>
<td>PBN</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Replaced with ATOM PVT or RNX</td>
</tr>
<tr>
<td>MIS</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>XYZ</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>DIF</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>MSB</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>GGB</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>MCB</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>CMB</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>CT1</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>CT2</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>CT3</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>SNV</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Replaced with ATOM NAV</td>
</tr>
<tr>
<td>SAL</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Replaced with ATOM NAV</td>
</tr>
<tr>
<td>SNW</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Replaced with ATOM NAV</td>
</tr>
<tr>
<td>SAW</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Replaced with ATOM NAV</td>
</tr>
</tbody>
</table>
NMEA or NMEA-like, ASCII Messages:

<table>
<thead>
<tr>
<th>ASCII Messages</th>
<th>OG14</th>
<th>MB100</th>
<th>MB2wo</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIM</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>ALM</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>AT2</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>ATT</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>CRT</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>DUM</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Returns decoded differential messages</td>
</tr>
<tr>
<td>DT1</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>GBS</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Use GBS for RAIM</td>
</tr>
<tr>
<td>GDC</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>GLL</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>GMP</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Format described in MB-Two manual only</td>
</tr>
<tr>
<td>GNS</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>MB100 GNS configuration command and query</td>
</tr>
<tr>
<td>GRS</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>GSA</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>GSN</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>GSV</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>GXP</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>HDT</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>HPL</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>L1N</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>MSG</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>PC5</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>PTC</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>RMC</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>RRE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>SAT</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>SUD</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>TCM</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>THS</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>TTI</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>UDU</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>UT1</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>VCI</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>VEC</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>VTG</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>XMG</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>ZDA</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>GLL</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

For more information on ATOM messages, please refer to the ATOM Reference Manual.
Appendices
Symbols

$PASHQ,ALR 320
$PASHQ,ANH 321
$PASHQ,ANP 322
$PASHQ,ANP,OUT 323
$PASHQ,ANP,OWN 323
$PASHQ,ANP,RCV 324
$PASHQ,ANP,REF 325
$PASHQ,ANR 326
$PASHQ,ANT 326
$PASHQ,ARA 327
$PASHQ,ARR 329
$PASHQ,AST 331
$PASHQ,ATH 332
$PASHQ,ATL 333
$PASHQ,ATT 335
$PASHQ,AVR 336
$PASHQ,BDS 338
$PASHQ,BRD 341
$PASHQ,BRV 341
$PASHQ,CAN 342
$PASHQ,COD,REF 343
$PASHQ,CST 344
$PASHQ,CST,USR 345
$PASHQ,d1,BLN 339
$PASHQ,DDM 346
$PASHQ,DDN 348
$PASHQ,DSS 349
$PASHQ,DFC 351
$PASHQ,DIF,BDS 351
$PASHQ,DIF,NET 352
$PASHQ,DIF,SBA 353
$PASHQ,DIF 354
$PASHQ,DRD 355
$PASHQ,DRS 355
$PASHQ,DSY 356
$PASHQ,DTH 358
$PASHQ,DTM 357
$PASHQ,DYN 359
$PASHQ,ELM 360
$PASHQ,Eth 361
$PASHQ,FIL,CUR 362
$PASHQ,FIL,LST 363
$PASHQ,FIL,STS 364
$PASHQ,FTP 365
$PASHQ,GAL 366
$PASHQ,GBS 367
$PASHQ,GEM 369
$PASHQ,GHD 370
$PASHQ,GLX 372
$PASHQ,QLL 374
$PASHQ,QLO 375
$PASHQ,QLX 376
$PASHQ,QMP 377
$PASHQ,QNS 379
$PASHQ,QPS 380
$PASHQ,QRS 381
$PASHQ,GSF 382
$PASHQ,GST 385
$PASHQ,QSV 386
$PASHQ,HDT 388
$PASHQ,HPR 389
$PASHQ,LBN 391
$PASHQ,LBN,BEM 393
$PASHQ,LCK 394
$PASHQ,LC 394
$PASHQ,LOG 395
$PASHQ,LOG,LST 396
$PASHQ,LOG,PAR 397
$PASHQ,LTN 398
$PASHQ,MDP 399
$PASHQ,MEM 400
$PASHQ,NPT 400
$PASHQ,NT 401
$PASHQ,NTR 402
$PASHQ,NTR,MTP 403
$PASHQ,NTR,TBL 404
$PASHQ,OB 406
$PASHQ,OC 406
$PASHQ,OPTION 407, 411
$PASHQ,OPTION,EXP 410
$PASHQ,OUT,GSF 412
$PASHQ,OUT,PGN 415
$PASHQ,PG 417
$PASHQ,PE 417
$PASHQ,PIN 418
$PASHQ,POS 419
$PASHQ,PP 420, 422
$PASHQ,PSP 424
$PASHQ,PT 425
$PASHQ,PSP 426, 446
$PASHQ,PTT 427
$PASHQ,QS 429
$PASHQ,RCA 430
$PASHQ,RCP,OWN 430
$PASHQ,RCP,REF 431
$PASHQ,RC 432
$PASHQ,RDP,CHT 433
$PASHQ,RDP,LVL 472
$PASHQ,RDP,PAR 435
$PASHQ,RDP,PWR 438
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PASHQ,RDP,TYP 439</td>
<td>PASHS,ATH,PWD 156</td>
</tr>
<tr>
<td>PASHQ,REC 440</td>
<td>PASHS,ATH,156</td>
</tr>
<tr>
<td>PASHQ,RFM 441</td>
<td>PASHS,ATM 158</td>
</tr>
<tr>
<td>PASHQ,RID 442</td>
<td>PASHS,ATM,ALL 161</td>
</tr>
<tr>
<td>PASHQ,ROT 445</td>
<td>PASHS,BDS 161</td>
</tr>
<tr>
<td>PASHQ,RTK 447</td>
<td>PASHS,BLN 163</td>
</tr>
<tr>
<td>PASHQ,RTX 448</td>
<td>PASHS,BRD 165</td>
</tr>
<tr>
<td>PASHQ,SAT 450</td>
<td>PASHS,BRV 166</td>
</tr>
<tr>
<td>PASHQ,SBA 452</td>
<td>PASHS,BRV,RST 167</td>
</tr>
<tr>
<td>PASHQ,SBD 452</td>
<td>PASHS,CAN,OFF 168</td>
</tr>
<tr>
<td>PASHQ,SGA 453</td>
<td>PASHS,CAN,ON 168</td>
</tr>
<tr>
<td>PASHQ,SGL 454</td>
<td>PASHS,CAN,PAR 169</td>
</tr>
<tr>
<td>PASHQ,SGP 456</td>
<td>PASHS,CMD,LOD 170</td>
</tr>
<tr>
<td>PASHQ,SIT 457</td>
<td>PASHS,CMD,WTI 171</td>
</tr>
<tr>
<td>PASHQ,SLB 457</td>
<td>PASHS,CMR 172</td>
</tr>
<tr>
<td>PASHQ,SNS 458</td>
<td>PASHS,CMR,ALL 173</td>
</tr>
<tr>
<td>PASHQ,SQZ 459</td>
<td>PASHS,CST,MPD 176</td>
</tr>
<tr>
<td>PASHQ,SSB 461</td>
<td>PASHS,CST,MPD,DEL178</td>
</tr>
<tr>
<td>PASHQ,STI 462</td>
<td>PASHS,CST,OFF 176</td>
</tr>
<tr>
<td>PASHQ,TCP 463</td>
<td>PASHS,CST,ON 175</td>
</tr>
<tr>
<td>PASHQ,TEM 464</td>
<td>PASHS,CST,PAR 178</td>
</tr>
<tr>
<td>PASHQ,THS 465</td>
<td>PASHS,CST,RST 180</td>
</tr>
<tr>
<td>PASHQ,TOP 466</td>
<td>PASHS,CST,USR,ADD181</td>
</tr>
<tr>
<td>PASHQ,TRS 466</td>
<td>PASHS,CST,USR,DEL182</td>
</tr>
<tr>
<td>PASHQ,UDP 468</td>
<td>PASHS,DDN,PAR 185</td>
</tr>
<tr>
<td>PASHQ,UPL 469</td>
<td>PASHS,DDN,SET 187</td>
</tr>
<tr>
<td>PASHQ,UPL,LOG 470</td>
<td>PASHS,DFC,DEL 182</td>
</tr>
<tr>
<td>PASHQ,VCR 473</td>
<td>PASHS,DFC,GET 183</td>
</tr>
<tr>
<td>PASHQ,VCT 476</td>
<td>PASHS,DFC,SET 184</td>
</tr>
<tr>
<td>PASHQ,YEL 478</td>
<td>PASHS,DFC,TST 185</td>
</tr>
<tr>
<td>PASHQ,VERSION 479</td>
<td>PASHS,DIF,BDS 187</td>
</tr>
<tr>
<td>PASHQ,YLP 480</td>
<td>PASHS,DIF,NET 188</td>
</tr>
<tr>
<td>PASHQ,YTG 480</td>
<td>PASHS,DIF,SBA 189</td>
</tr>
<tr>
<td>PASHQ,WEB 481</td>
<td>PASHS,DIFF,OFF 251</td>
</tr>
<tr>
<td>PASHQ,XDR 413</td>
<td>PASHS,DIP,OFF 190</td>
</tr>
<tr>
<td>PASHQ,ZDA 482</td>
<td>PASHS,DIP,ON 191</td>
</tr>
<tr>
<td>PASHR,TIT 467</td>
<td>PASHS,DIP,PAR 191</td>
</tr>
<tr>
<td>PASHS,,USE 215</td>
<td>PASHS,DRD 193</td>
</tr>
<tr>
<td>PASHS,3DF 139</td>
<td>PASHS,DRI 194</td>
</tr>
<tr>
<td>PASHS,3DF,ANG 141</td>
<td>PASHS,DSY 194</td>
</tr>
<tr>
<td>PASHS,3DF,CLB 141</td>
<td>PASHS,DYN 195</td>
</tr>
<tr>
<td>PASHS,3DF,MBX 142</td>
<td>PASHS,ELM 196</td>
</tr>
<tr>
<td>PASHS,3DF,OF5 143</td>
<td>PASHS,ENC 197</td>
</tr>
<tr>
<td>PASHS,3DF,RST 145</td>
<td>PASHS,ETD,PAR 198</td>
</tr>
<tr>
<td>PASHS,3DF,Vx 146</td>
<td>PASHS,ETH,OFF 199</td>
</tr>
<tr>
<td>PASHS,ALR,ACK 147</td>
<td>PASHS,ETH,ON 199</td>
</tr>
<tr>
<td>PASHS,ANH 147</td>
<td>PASHS,ETH,PAR 200</td>
</tr>
<tr>
<td>PASHS,ANP,OUT 148</td>
<td>PASHS,FIL,CPY 201</td>
</tr>
<tr>
<td>PASHS,ANP,OWN 150</td>
<td>PASHS,FIL,DEL 202</td>
</tr>
<tr>
<td>PASHS,ANP,REF 151</td>
<td>PASHS,FIL,GET 203</td>
</tr>
<tr>
<td>PASHS,ANR 152</td>
<td>PASHS,FIL,WR 205</td>
</tr>
<tr>
<td>PASHS,ANT 154, 515</td>
<td>PASHS,FMT 207</td>
</tr>
<tr>
<td>Command</td>
<td>Page</td>
</tr>
<tr>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>$PASHS,FTP,OFF</td>
<td>207</td>
</tr>
<tr>
<td>$PASHS,FTP,PAR</td>
<td>208</td>
</tr>
<tr>
<td>$PASHS,FTP,PUT</td>
<td>209</td>
</tr>
<tr>
<td>$PASHS,GAL</td>
<td>211</td>
</tr>
<tr>
<td>$PASHS,GEM</td>
<td>212</td>
</tr>
<tr>
<td>$PASHS,GL...</td>
<td>214</td>
</tr>
<tr>
<td>$PASHS,GLB</td>
<td>212</td>
</tr>
<tr>
<td>$PASHS,GLO</td>
<td>213</td>
</tr>
<tr>
<td>$PASHS,GPS</td>
<td>217</td>
</tr>
<tr>
<td>$PASHS,GSF</td>
<td>217</td>
</tr>
<tr>
<td>$PASHS,GSF,ALL</td>
<td>218</td>
</tr>
<tr>
<td>$PASHS,INI</td>
<td>219</td>
</tr>
<tr>
<td>$PASHS,LBN,BEM</td>
<td>220</td>
</tr>
<tr>
<td>$PASHS,LBN,SAT</td>
<td>222</td>
</tr>
<tr>
<td>$PASHS,LBN,USE</td>
<td>223</td>
</tr>
<tr>
<td>$PASHS,LCK,MODE</td>
<td>224</td>
</tr>
<tr>
<td>$PASHS,LCK,OFF</td>
<td>225</td>
</tr>
<tr>
<td>$PASHS,LCK,ON</td>
<td>226</td>
</tr>
<tr>
<td>$PASHS,LCS</td>
<td>227</td>
</tr>
<tr>
<td>$PASHS,LOG,DEL</td>
<td>228</td>
</tr>
<tr>
<td>$PASHS,LOG,PAR</td>
<td>228</td>
</tr>
<tr>
<td>$PASHS,MDP</td>
<td>229</td>
</tr>
<tr>
<td>$PASHS,MEM</td>
<td>230</td>
</tr>
<tr>
<td>$PASHS,MET,OWN</td>
<td>230</td>
</tr>
<tr>
<td>$PASHS,MET,REF</td>
<td>230</td>
</tr>
<tr>
<td>$PASHS,MSG</td>
<td>232</td>
</tr>
<tr>
<td>$PASHS,NME</td>
<td>233</td>
</tr>
<tr>
<td>$PASHS,NME,ALL</td>
<td>235</td>
</tr>
<tr>
<td>$PASHS,NME,ALR</td>
<td>236, 237</td>
</tr>
<tr>
<td>$PASHS,NPT</td>
<td>238</td>
</tr>
<tr>
<td>$PASHS,NTP,239</td>
<td></td>
</tr>
<tr>
<td>$PASHS,NTR,LOD</td>
<td>240</td>
</tr>
<tr>
<td>$PASHS,NTR,MTP</td>
<td>241</td>
</tr>
<tr>
<td>$PASHS,NTR,PAR</td>
<td>242</td>
</tr>
<tr>
<td>$PASHS,OBS</td>
<td>243</td>
</tr>
<tr>
<td>$PASHS,OCN</td>
<td>245</td>
</tr>
<tr>
<td>$PASHS,OPTION</td>
<td>246</td>
</tr>
<tr>
<td>$PASHS,OUT,ALL</td>
<td>250</td>
</tr>
<tr>
<td>$PASHS,OUT,x,ON/OFF</td>
<td>249</td>
</tr>
<tr>
<td>$PASHS,PAR,LOD</td>
<td>252</td>
</tr>
<tr>
<td>$PASHS,PAR,SAT</td>
<td>253</td>
</tr>
<tr>
<td>$PASHS,PEM</td>
<td>254</td>
</tr>
<tr>
<td>$PASHS,PNG</td>
<td>254</td>
</tr>
<tr>
<td>$PASHS,PNG,ALL</td>
<td>255</td>
</tr>
<tr>
<td>$PASHS,PNG,ALL</td>
<td>255</td>
</tr>
<tr>
<td>$PASHS,PGS</td>
<td>256</td>
</tr>
<tr>
<td>$PASHS,PIE</td>
<td>259</td>
</tr>
<tr>
<td>$PASHS,PIN</td>
<td>260</td>
</tr>
<tr>
<td>$PASHS,POD</td>
<td>264</td>
</tr>
<tr>
<td>$PASHS,POS</td>
<td>265</td>
</tr>
<tr>
<td>$PASHS,POS,CUR</td>
<td>267</td>
</tr>
<tr>
<td>$PASHS,POS,MOV</td>
<td>269</td>
</tr>
<tr>
<td>$PASHS,POS,REF</td>
<td>174</td>
</tr>
</tbody>
</table>

Numerics

<table>
<thead>
<tr>
<th>Value</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3DF</td>
<td>139</td>
</tr>
<tr>
<td>3DF,ANG</td>
<td>141</td>
</tr>
<tr>
<td>3DF,CLB</td>
<td>141</td>
</tr>
<tr>
<td>3DF,MXB</td>
<td>142</td>
</tr>
<tr>
<td>3DF,OF5</td>
<td>143</td>
</tr>
<tr>
<td>3DF,RST</td>
<td>145</td>
</tr>
<tr>
<td>3DF,VL</td>
<td>146</td>
</tr>
</tbody>
</table>
A
Accessories 9
ACK 127
Active edge (event marker) 259, 417
Adaptive 195, 359
Adding L-band satellite manually 222
Alarm message 236
Alarms 147
Alarms (listing) 320
Alarms message (NMEA-like) 237
Alerts 147
ALR 320
ANH 147, 321
ANP 322
ANP,OUT 148, 323
ANP,OWN 150, 323
ANP,RCV 324
ANP,REF 151, 325
ANR 152, 326
ANT 154, 326
Antenna height 147, 321, 326
Antenna inputs 27
Antenna name and status of received base 324
Antenna parameters 322
Antenna reduction 326
Antenna reduction mode 326
Antenna status 331
Antenna used at the base 325
Antenna used to receive L-band 212
Antenna/receiver attributes 133
Antennas 16
Anti-theft parameters (listing) 332
Application setup commands 129
ARA 327
ARP 153, 154, 266, 296, 514
ARR 329
ASH 197
AshCom 16, 23
Assigning function to programmable pin on I/O connector 260
AST 28, 331
ATH 322
ATL 333
ATL command 156
ATL messages 156
ATM 158, 196
ATM,ALL 161
ATOM messages 158
ATT 335
Attitude 389
Attitude (auto-calibration) 141
Attitude (reset) 145
Attitude components 327
Auto-calibration 141
AVR 131, 234, 336
B
Balanced antenna signal levels in DUO mode 28
Base antenna (naming) 151
Base data stream (preferred) 291
Base position entered manually 422
Base position used in rover 343
Baseline definitions & status 339
Baseline elevation (max) 141
Baseline length (choice of) 29
Baselines and respective base/rover data sources 163
Basic supply 7
Baud rate 425
BDS 338
BeiDou 12, 187
BeiDou correcting data 351
BeiDou satellites status 452
BeiDou tracking 161
BeiDou tracking status 338
BLN 163, 339
Board configurations 7
Bottom view 6
BRD 165, 341
BRV 166, 341
BRV,RST 167
C
Calibration 141
CAN 342
CAN bus 18, 20
CAN bus parameters 169
CAN port 168
CAN,OFF 168
CAN,ON 168
CAN,PAR 169
Caster IP address 242
Changing the administrator profile 316
Channels 12
CMD,LOD 170
CMD,WTI 171
CMR 172, 196
CMR messages 172
CMR,ALL 173
CMR/CMR+ messages 173
CMR+ 172, 196
Cold start 219
Communication ports 135
Communicator 16
Computed position 420
Configuring the receiver from a PAR file 252
Connection profiles 481
COO,REF 174, 343
Copying files from internal to external memory 201
Course over ground 480
Create file from the default configuration 183
Crossover cable 22
Crossover cable (Ethernet) 73

CST 344
CST,MTP,ADD 176
CST,MTP,DEL 178
CST,OFF 176
CST,ON 175
CST,PAR 178
CST,RST 180
CST,USR 345
CST,USR,ADD 181
CST,USR,DEL 182

D
D (port D) 229
Daisy chain 194, 356
Data recording status 432
Date & time 317
Datum Reference 357
DDM 346
DDN 348
DDN,PAR 185
DDN,SET 187
DDS 349
Debug data recording 333
Debug messages 156
Default configuration file (read content) 351
default_config.cmd 184
Delete default configuration file 182
Deleting files and directories 202
Deleting log files 228
DFC 351
DFC,DEL 182
DFC,GET 183
DFC,SET 184
DFC,TST 185
DHCP 71, 73
Die temperature 464
DIF,BDS 351
DIF,NET 352
DIF,SBA 353

Source of SBAS corrections 353
Differential Decoder Message 346
Differential decoder status 349
Differential messages 135
Differential messages (disable all) 251
Dimensions 17
DIP 354
DIP,OFF 190
DIP,ON 191
DIP,PAR 191
Direct IP 354
Direct IP connection 190, 191
Direct IP parameters 191
Disabling all ATOM messages 161
Disabling all GSOF messages on a port 218
Disabling all NMEA 2000 messages 255
Disabling satellite tracking 215
Dithering mode 358
Downloading a file from the receiver 203
DRD 193, 355
DRI 194, 355
dsy 194, 356
DTH 358
DTM 357
Duration (of data recording in G-file) 355
DYN 195, 359
Dynamic IP address 185, 187
Dynamics 195, 312
DynDNS 185, 187
DynDNS parameters 348

E
Editing a log file 395
Editing the firmware upgrade log file 470
EGM96 212, 369
Elevation mask 196, 254
Elevation mask (position) 416
ELM 196, 360
Embedded NTRIP caster 175, 176, 178, 180, 181, 182
Enable/disable Galileo 211
Enabling the Web Server 316
ENC 197
Ending data transfer with FTP 207
Enter owner information 316
ETD,PAR 198
ETH 361
ETH,OFF 199
ETH,ON 199
ETH,PAR 200
Ethernet 18, 361
Ethernet driver parameters 198
Ethernet parameters 200
Ethernet port 199
Ethernet protection 22
Ethernet-related commands 135
Evaluation kit 9, 21
Event marker 467
Event marker (active edge) 259, 417
Expiration date 509
Expiration dates 410
Extended Attitude message 445
External event signal 18
Fallback caster 344
Field delimiter 127
FIL,CPY 201
FIL,CUR 362
FIL,DEL 202
FIL,GET 203
FIL,LST 363
FIL,STS 364
FIL,WRT 205
Firmware (upgrade) 508
Firmware options 7, 246, 407
Firmware version 479
Foot print beam ellipses 220
Formatting 207
FST (Fast) 525
FTP 365
FTP settings 208
FTP,OFF 207
FTP,PAR 208
FTP,PUT 209
Galileo 12
Galileo (enable/disable) 211
GALILEO satellites status 453
GALILEO tracking status 366
Gateway 74
GBS 367
GEM 369
General purpose commands 134
Geoid model 212, 369, 371, 378
G-file being recorded 362
GGA 233, 370
GGXK 372
GLB 212, 373
GLL 233, 374
GLO 213, 375
GLONASS 12
GLONASS satellites status 454
GLONASS tracking 213
GLx 214, 376
GM 514
GMP 377
GNS 379
GNS USE (USE to be accurate) 215
GNSS Fix Data 379
GNSS network-related commands 136
GPS 12, 380
GPS & SBAS satellites status 456
GPS tracking 217
Ground speed 480
GRS 333, 381
GSA 233
GSOF messages (controlling output of) 217
GSOF messages output 412
GST 233, 385
GSV 233, 386
Hardware options 7
Header 127
Heading 335
Hot Standby RTK 13
HPR 389
I/O connector 18, 28, 260
I/O data formats 13
I/O Interface 16
IGS antenna source table 150
INI 219
Insert wait times while a command file is executed 171
Installation 17
Installed firmware options 410
IP address (board’s) 71
ITRF 265, 295
ITRF2008 292
Jumpers 23
L1, L2 214
Latency 398
L-Band 12
L-band reception antenna input 373
L-band satellite (adding manually) 220, 222
L-band satellites (user defined) 393
L-Band satellites status 457
L-band setup 391
L-band tracking 223
LBN 391
LBN.BEM 220, 393
LBN,SAT 222
LBN,USE 223
LCK 394
LCK.MOD 224
LCK.OFF 226
LCK.ON 226
LCS 227, 394
LED indicator 19
Listing files stored in receiver memory or USB key 363
Listing log files 396
Listing Web Server settings 481
LNA 15, 23, 28
Local antenna 323
Local antennas (naming) 150
Local coordinate system 227, 394
Lock 224, 226, 394
LOG 395
Log & alarm-related commands 136
Log file settings 397
LOG,DEL 228
LOG,LST 396
LOG,PAL 228, 397
LTN 398
LV-TTL 20
Lx signals (enabling/disabling)) 214
M
Magnetics 22
Mask angle 254
Max elevation (for baselines) 141
MCA 196
MDP 229, 399
MEM 230, 400
Memory & data recording commands 137
Memory device 400
Memory device used 230
Memory reset codes 220
Memory status 364
MET,OWN 230
MET,REF 230
Meteorological parameters 230
Mount point (connection to) 241
Mount points (allowed to users) 181
Mount points (create/modify) 176
Mount points (delete) 178
MPC 196
M-Sensor setting 458
MSG 232
N
NAK 127
NATO standard mean seal level 371, 378
Network rover 188
NME 233
NME messages 130
NME.ALL 235
NME.ALR 236, 237
NMEA 2000 messages (controlling output of) 254
NMEA 2000 messages output 415
NMEA, NMEA-like messages 233, 235
NPT 238, 400
NTP 239, 401
NTP server 239, 401
NTR 402
NTR,LOD 240
NTR,MTP 241, 403
NTR,PAR 242
NTR,TBL 404
NTRIP caster 403
NTRIP caster parameters 344
NTRIP caster source table 240
NTRIP caster user (delete) 182
NTRIP caster users 345
NTRIP mount point 403
NTRIP settings 242, 402
NTV 197
O
OBS 406
Observations (preference) 243
Observations usage 406
OCC 245, 406
Occupation 245, 406
Offset (heading) 29
Offset (pitch) 30
Offset (roll) 30
Offsets (attitude) 143
Offsets (entering) 33
OPTION 246, 407
OPTION,EXP 410
OUT 411
OUT,ALL 250
OUT,DIFF,OFF 251
OUT,GSF 412
OUT,MSG 413
OUT,PGN 415
OUT,x,ON/OFF 249
Output messages 413
Owner information 481
P
PAR file 252, 253
PAR, LOD 252
PAR, SAV 253
Password (anti-theft) 156
PC1 153, 266, 296
P-Cube 1
PEM 254, 416
Periodic message output (suspend/resume) 249
Periodic message status 411
Periodic messages (disabling all) 250
PGS 256, 417
PHE 259, 417
PIN 260, 418
Pitch 335
POP 264, 419
Port D communication mode 399
POS 265, 422
POS message
 how position solution type is tagged 238, 400
POS, CUR 267
POS, MOV 269
Position of Physical Reference Position
Received 426, 446
PPP 270, 423
PPP service (reset) 270
PPP services 270, 271
PPP, RST 270
PPP, SRC 271
PPS 271, 424
PPS (1 PPS) 16
PPS signal 18
PPS time tag 427
Primary GNSS 256
Primary GNSS system 417
Profiles 481
Programmable pin on I/O connector 418
PRT 272
Pseudo-range error statistics 385
PSP 426, 446
PTT 427
PWR, OFF 273
Q
Query commands 125
QZS 274, 429
QZSS 12
QZSS satellites status 459
QZSS tracking 274, 429
R
Radio channel settings 433
Radio parameters 435
Radio power table 438
Radio settings 276
Radio type 281, 439
Radio-related commands 138
RAIM 367
Raw data recording 282
Raw data recording duration 193
Raw data recording rate 194, 355
Raw data recording status 440
Raw/Differential Message commands 130
RCA 131, 430
RCP, OWN 430
RCP, OWN/REF 274
RCP, REF 275, 431
RCS 432
RDP, CHT 433
RDP, LVL 472
RDP, PAR 276, 435
RDP, PWR 438
RDP, TYP 281, 439
Reading FTP status and settings 365
Reading RTK Bridge settings 341
Reading the internal update rate 419
Reading the radio reception level 472
Reading the receiver name 430
Reading the reference receiver name 431
Reading the status and settings of the FTP
server providing firmware upgrades 469
REC 282, 440
Received CMR Type 2 Attribute 430
Receiver Autonomous Integrity Monitoring 367
Receiver configuration commands 137
Receiver dynamics 359
Receiver identification 442
Receiver name 274
Reference position ("one-shot" current position) 267
Reference position (current position, potentially ever changing) 269
Reference position (entering at rover) 174
Reference receiver name (base receiver name) 275
Relative mode status 341
Relative processing 166
Reset (attitude computation) 145
Reset (relative positioning) 167
Reset processor and memory 219
Reset receiver parameters 284
Reset RTK/RTX computation 290
Reset signal 18
Resetting embedded NTRIP caster 180
Resetting RTX computation 298
RFM 283, 441
RINEX conversion parameters 301
RINEX header 303
RINEX header definition 301
Ring file memory 283, 441
RMC 234
Roll 335
ROT 445
RST 284
RT2 196
RT3 196, 287
RT3,ALL 289
RTCM 2.3 messages 285, 286
RTCM 3.1 messages 287, 289
RTK 447
RTK (command) 289
RTK Bridge 165
RTK processing status 447
RTK,RST 290
RTK,STI 291
RTX 448
RTX - Computing RTX position 67
RTX processing status 448
RTX,DTM 292
RTX,KPI 295
RTX,MOD 297
RTX,RST 298
RTX,SRC 299
Run a series of commands 170
Running attitude processing on set baselines 139
Running RTK processing on set baselines 289
RXC,PAR 301
RXC,RUN 303
S
SAT 450
Saving the receiver configuration to a PAR file 253
SBA 304, 452
SBAS 12
SBAS messages (enable/disable) 304
SBAS satellites status 461
SBAS tracking status 452
SBD 452
Semi-major axis 385
Semi-minor axis 385
Serial commands 125
Serial connection 25
Set commands 125
Set date & time 317
Set default configuration file 184
Set FTP providing firmware upgrades 313
Setting primary GNSS system 256
Setting the log file 228
SGA 453
SGL 454
SGP 456
SHMP 154
STI 305, 457
Site name 305, 457
Size 15
SLB 457
SNS 458
Source of correction data 352
Source table 176, 178, 404
SP Loader 507
Space required 17
SPT 153, 266, 296
SO 459
SSB 461
STANAG 212, 369
Starting embedded NTRIP caster 175
Startup protection 13, 63
Station ID 308, 462
STI 308, 462
Stock product 12
Stopping embedded NTRIP caster 176
Subnetwork mask 74
T
TCP 463
TCP,PAR 309
TCP,UID 310
TCP/IP 20
TCP/IP authentication 310
TCP/IP connection 25
TCP/IP server settings 309, 463
Tectonic plates 292
TEM 464
TERIAsat 270, 466
Test default configuration file 185
THS 465
Time & date 482
Tolerance (on baseline lengths) 142
TOP 311, 466
Top view 6
Tracked signals on different bands 376
Tracking commands 129
Transport mode 197
Trimble RTX 270, 292, 297, 299
True heading and status 465
TT (TimeTagged) 525
Turning receiver on 273
Type of output position 311
Type of position delivered 466
U
UDP 312, 468
ULP, UPG 314
Unlock 225
Update rates 264
Upgrade (firmware) 508
Upgrade procedure (firmware) 508
Upgrade receiver firmware 508
Upgrade receiver firmware from FTP 314
UPL 469
UPL, LOG 470
UPL, PAR 313
Uploading raw data files to FTP 209
USB 2.0 20
User messages 232
User-defined dynamic model 312, 468
V
Validity period 480
VCR 473
VCT 476
Vector components 146, 329, 473, 476
Vector, relative processing 166
VEL 478
Velocity & accuracy 478
VERSION 479
Vertical measurement 147
VIP 315
Virtual antenna 323
Virtual antenna (specify name) 148
Virtual port 315
VLP 480
VTG 234, 480
W
Warm start 219
Warranty (end of) 509
WEB 481
WEB, OWN 316
WEB, PAR 316
Weight 15
Writing a file 205
Z
Z-Blade 1
ZDA 234, 317, 482